K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)

\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)

\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)

Dấu " = " xảy ra khi \(x=\frac{1}{3}\)

28 tháng 11 2019

Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?

28 tháng 11 2019

à là \(\frac{8x}{y}\)đó

4 tháng 11 2016

\(VT=27x^2-36x+12+\frac{8x}{y}\)

\(=\frac{8x}{1-x}+18x\left(1-x\right)+45x^2-54x+12\)

\(\ge45x^2-54x+12+24x\)

\(=45x^2-30x+12=5\left(9x^2-6x+\frac{12}{5}\right)\)

\(=5\left[\left(3x-1\right)^2+\frac{7}{5}\right]\ge7\)

Dấu = khi \(x=\frac{1}{3};y=\frac{2}{3}\)

NV
27 tháng 11 2019

\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)

\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)

\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)

Dấu "=" xảy ra khi \(x=\frac{1}{3}\)

14 tháng 6 2019

bài lớp mấy mà khó dữ

Ta có : \(xy+yz+zx=1\)

\(\Rightarrow\hept{\begin{cases}1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\\1+y^2=xy+yz+zx+y^2=\left(y+x\right)\left(y+z\right)\\1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\end{cases}}\)

Do đó :

\(\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\sqrt{\left(y+z\right)^2}\)\(=y+z\)

\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\left(y+z\right)\)

Hoàn toàn tương tự :

\(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\left(z+x\right)\)

\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\left(x+y\right)\)

Do đó :

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)

\(=2\left(xy+yz+zx\right)=2\)

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

28 tháng 10 2016

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath

2 tháng 8 2018

Tham khảo bài giải nhé !

CHúc bạn học tốt