Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(z=x+yi\Rightarrow |z|=\sqrt{x^2+y^2}=1(1)\)
\(y=\sqrt{3}x; y>0\Rightarrow \left\{\begin{matrix} x>0\\ y^2=3x^2(2)\end{matrix}\right.\)
Từ \((1); (2)\Rightarrow \sqrt{x^2+3x^2}=1\Leftrightarrow 2x=1\Leftrightarrow x=\frac{1}{2}\)
\(\Rightarrow y=\frac{\sqrt{3}}{2}\)
Số phức \(z=\frac{1}{2}+\frac{\sqrt{3}i}{2}\)
\(\Rightarrow z-\frac{1}{z}+1=1+\sqrt{3}i\)
\(\Rightarrow |z-\frac{1}{z}+1|=\sqrt{1^2+3}=2\) (đây chính là mo đun của số phức đã cho )
Phương trình tham số d1: \(\left\{{}\begin{matrix}x=1+2t\\y=3+3t\\z=2t\end{matrix}\right.\)
Phương trình tham số d2: \(\left\{{}\begin{matrix}x=5+6t'\\y=4t'\\z=5-5t'\end{matrix}\right.\)
Gọi (Q) là mặt phẳng song song (P) và cách (P) 1 khoảng bằng 2 \(\Rightarrow\) pt có dạng \(x-2y-2z-d=0\) (\(d\ne1\))
Gọi \(A\left(d;0;0\right)\) là 1 điểm thuộc (Q)
\(d\left(A;\left(P\right)\right)=2\Leftrightarrow\frac{\left|d+1\right|}{\sqrt{1+4+4}}=2\Leftrightarrow\left|d+1\right|=6\Rightarrow\left[{}\begin{matrix}d=5\\d=-7\end{matrix}\right.\)
Có 2 mp (Q) thỏa mãn: \(\left[{}\begin{matrix}x-2y-2z-5=0\\x-2y-2z+7=0\end{matrix}\right.\)
M là giao điểm (Q) và d1 nên tọa độ M là ...
N là giao điểm (Q) và d2 nên tọa độ N là ...
(S) có tâm \(I\left(m-3;2m;-1\right)\)
Để I thuộc (P) \(\Rightarrow m-3+2m-2.\left(-1\right)-3=0\)
\(\Rightarrow3m-4=0\Rightarrow m=\dfrac{4}{3}\)
Chọn A.
Các mặt phẳng đôi một vuông góc và có một điểm chung.
Chọn C
Phương trình tham số của đường thẳng Δ:
Gọi tâm I ∈ Δ => I (3+2t;1-t;1-2t)
Vì mặt cầu (S) đồng thời tiếp xúc với hai mặt phẳng (α1) và (α2) nên ta có
Do đó có vô số mặt cầu thỏa yêu cầu đề bài.
M∈ (S) : (x0 - 2)2 + (y0-1)2 +(z0-1)2 =9.
A=x0+2y0+2z0=(x0-2)+2(y0-1)+2(z0-1)+6
Dùng BĐT bunhiacopski
[(x0-2)+2(y0-1)+2(z0-1)]2 ≤ (1+4+4).[(x0 - 2)2 + (y0-1)2 +(z0-1)2 ]
≤ 81
-9 ≤ (x0-2)+2(y0-1)+2(z0-1) ≤ 9.
-3 ≤ A ≤ 12. vậy GTNN của A = -3.
Dấu bằng xảy ra khi :
x0+2y0+2z0 = -3
và \(\dfrac{x0-2}{1}=\dfrac{y0-1}{1}=\dfrac{z0-1}{1}\)
Giải hệ được x0=1, y0=z0=-1. Suy ra: x0+y0+z0 = -1
Gọi vecto chỉ phương của tiếp tuyến là \(\overrightarrow{u}_{(a,b,c)}\). Ta có :
\(\overrightarrow {AC}=(-1,-1,0);\overrightarrow {n}_{P}=(2,1,1)\)
Theo điều kiện đề bài \(\overrightarrow{u}\perp \overrightarrow{AC},\overrightarrow{u}\perp \overrightarrow{n}_{P}\Rightarrow \overrightarrow{u}=[\overrightarrow{AC},\overrightarrow{n}_{P}]=(-1,1,1)\)
Do đó phương tiếp tuyến có dạng \(\frac{x-2}{-1}=y-2=z\), tức đáp án $B$ là đáp án đúng
Lời giải:
$x\in \mathbb{Z}^+, y\in\mathbb{Z}^-$ thì $xy\in\mathbb{Z}^-$
Còn $x+y$ không xác định được là nguyên âm hay nguyên dương vì nó có thể xảy ra cả 2 TH:
x=5, y=-3 thì x+y nguyên dương
x=1, y=-3 thì x+y nguyên âm.