Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNP có
H là trung điểm của MN
I là trung điểm của MP
Do đó: HI là đường trung bình
=>HI//NP và HI=NP/2(1)
Xét ΔPQN có
J là trung điểm của PQ
K là trung điểm của QN
Do đó: JK là đường trung bình
=>JK//PN và JK=PN/2(2)
Từ (1) và (2) suy ra HI//KJ và HI=KJ
hay HKJI là hình bình hành
b: Để HKJI là hình thoi thì HJ⊥KI
hay MP⊥NQ
Bạn tự vẽ hình nha
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT )
=> DE là đường trung bình của tam giác MNP
=> DE = NP/2 (1)
CMTT : DG = MQ/2 (2)
và FG = NP/2 (3)
và EF =MQ/2 (4)
Từ (1), (2), (3), (4), Mà NP = MQ ( GT )
=> DE = EF = FG= GD
Xét tứ giác DEFG có :
DE = EF = FG= GD ( CMT )
=> DEFG là hình thoi
Vậy DEFG là hình thoi
Bạn tự vẽ hình nha
Câu b)
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT )
=> DE là đường trung bình của tam giác MNP
=> DE // NP
CMTT : DG // MQ
Để hình thoi DEFG là hình vuông
<=> góc GDE = 90 độ
<=> GD vuông góc DE
Ta có : DE // NP ( CMT )
và DG// MQ ( CMT )
Để GD vuông góc DE
<=> MQ vuông góc NP
Vậy tứ giác MNPQ có NP = MQ, NP vuông góc MQ thì tứ giác DEFG là hình vuông
a: Xét tứ giác MNIH có
MH//NI
MN//IH
góc MHI=90 độ
Do đó: MNIH là hình chữ nhật
b: Xét ΔMHQ vuông tại H và ΔNIP vuông tại I có
MQ=NP
góc Q=góc P
Do đó: ΔMHQ=ΔNIP
=>QH=IP
c: Xét ΔMKQ có
MH vừa là đường cao, vừa là trung tuyến
nên ΔMKQ cân tại M
=>góc MQK=góc MKQ=góc P
=>MK//NP
mà MN//KP
nên MNPK là hình bình hành
=>MP cắt NK tại trung điểm của mỗi đường
=>M,E,P thẳng hàng
a: Xét tứ giác MNEP có
H là trung điểm của NP
H là trung điểm của ME
Do đó: MNEP là hình bình hành
b: Ta có: MNEP là hình bình hành
=>MN//PE
mà QP//MN
và PE,QP có điểm chung là P
nên E,P,Q thẳng hàng