Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
∠M + ∠N + ∠P + ∠Q = 360⁰ (tổng các góc trong tứ giác MNPQ)
⇒ ∠M + ∠N + ∠P + (∠P + 10⁰) = 360⁰
⇒ ∠M + ∠N + (∠N + 10⁰) + (∠N + 10⁰ + 10⁰) = 360⁰
⇒ ∠M + (∠M + 10⁰) + (∠M + 10⁰ + 10⁰) + (∠M + 10⁰ + 10⁰ + 10⁰)
⇒ ∠M + ∠M + 10⁰ + ∠M + 20⁰ + ∠M + 30⁰ = 360⁰
⇒ 4∠M + 60⁰ = 360⁰
⇒ 4∠M = 360⁰ - 60⁰
⇒ 4∠M = 300⁰
⇒ ∠M = 300⁰ : 4
⇒ ∠M = 75⁰
⇒ ∠N = 75⁰ + 10⁰ = 85⁰
⇒ ∠P = 85⁰ + 10⁰ = 95⁰
⇒ ∠Q = 95⁰ + 10⁰ = 105⁰
\(\widehat{M}+\widehat{N}+\widehat{P}+\widehat{Q}=360^o\)
\(\widehat{M}+\widehat{M}+10+\widehat{M}+20+\widehat{M}+30=360\)
\(4\widehat{M}=360-60=300\Rightarrow M=75^o\)
Xét ∆ABC có :
AM = MB
BN = NC
=> MN là đương trung bình ∆ABC
=> MN //AC (1)
Xét ∆ADC có :
AQ = QD
=> PQ //AC (2)
Từ (1) và (2) ta có :
MN //PQ (3) .
CMTT ta có :
MQ // NP (4)
=> Từ (3) và (4) ta có :
=> MNPQ là hình bình hành (dpcm)
a. ΔABC có : AM=MB (gt)
BN=NC (gt)
=> MN là đường trung bình của ΔABC
=>MN//AC(1)
ΔADC có : AQ=QD(gt)
CP=PD(gt)
=>PQ là đường trung bình của ΔADC
=>PQ//AC(2)
Từ (1) và (2) => MN//PQ (3)
CMTT ta có : MQ//NP(4)
Từ (3) và (4)=> MNPQ là hình bình hành
b. MNPQ là hình chữ nhật <=> Góc M1 = 90°
Mà MN//AC => góc K1 = 90°
NP//MQ => góc O1 = 90°
hay AC⊥BD
Vậy tứ giác ABCD có AC⊥BD thì MNPQ là hình chữ nhật(Vẽ hình hơi lỗi :v)
b)
các góc băng nhau:
ONTˆONT^ == NPKˆNPK^ (đồng vị)
NTOˆNTO^ == PITˆPIT^ (đồng vị)
IPOˆIPO^ == PORˆPOR^ (sole trong)
RONˆRON^ == ONTˆONT^ (sole trong)
-các góc bù nhau:
NTIˆNTI^ và NTOˆNTO^
-các góc ngòai của tam giác TNO:
TNPˆTNP^ ; ITNˆITN^
-tổng các góc trong của tứ giác PROI: 360o
-tổng các góc trong của tứ giác PNTI: 360o
1)
Do tổng 4 góc trong 1 tứ giác = 360 độ (tính chất)
=> M + N + P + Q = 360 độ
=> 120 + 3P= 360
=> 3P = 240 độ
=> góc P = 80 độ
2)
TTu áp dụng tổng 4 góc trong 1 tứ giác = 360 độ
=> D=360-40-60-120=140 độ
3)
=> góc trong tại đỉnh A = 180-30=150 độ
Góc trong tại đỉnh B = 180 - 70 = 110 độ
Góc trong tại đỉnh C= 180 - 100=80 độ
=> Góc trong D = 360-150-110-80=20 độ
4)
Do góc A=100 độ; góc B=120 độ
=> góc C + góc D = 360-100-120=140 độ
Mà góc C + góc D =20 độ
=> 2.góc C=160 độ
=> Góc C=80 độ
=> Góc D=80-20=60 độ.
a: Xét ΔMNP và ΔPQM có
MN=PQ
NP=QM
MP chung
=>ΔMNP=ΔPQM
b: Xét tứ giác MNPQ có
MQ=NP
MN=PQ
=>MNPQ là hình bình hành
=>MN//PQ và MQ//NP
\(a)\) Ta có : \(M:N:P:Q=1:2:3:4\)
\(\Rightarrow\dfrac{M}{1}=\dfrac{N}{2}=\dfrac{P}{3}=\dfrac{Q}{4}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\left(1\right)=\dfrac{M+N+P+Q}{1+2+3+4}=\dfrac{360}{10}=36\)
\(\Rightarrow\left\{{}\begin{matrix}M=36.1=36\\N=36.2=72\\P=36.3=108\\Q=36.4=144\end{matrix}\right.\)
\(b)\) Xét từ giác MNPQ có : \(gócM+gócQ=36+144=180độ\)
Mà : 2 góc ở vị trí trong cùng phía .
\(\Rightarrow MN//PQ\left(đpcm\right)\)
a) \(\dfrac{M}{1}=\dfrac{N}{2}=\dfrac{P}{3}=\dfrac{Q}{4}=\dfrac{M+N+P+Q}{1+2+3+4}=\dfrac{360}{10}=36\)
\(\Rightarrow\left\{{}\begin{matrix}M=36.1=36^o\\N=36.2=72^o\\P=36.3=108^o\\Q=36.4=144^o\end{matrix}\right.\)