K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

GỌi EM là tiếp tuyến của đường tròn ngoại tiếp tam giác AEB , EN là tiếp tuyến của đường tròn ngoại tiếp tam giác CED

hai đường tròn tiếp xúc nhau 

=> M,E,N thẳng hàng

=> góc AEM = góc CEN

ta lại có góc AEM= góc ABE

               góc CEN = góc EDC

=> góc ABE= góc EDC 

=> AB//CD

zậy

Mỗi câu sau đây đúng hay sai?a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếpb) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếpc) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấyd) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.e) Giao điểm...
Đọc tiếp

Mỗi câu sau đây đúng hay sai?

a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy

d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.

e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.

f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.

g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn

h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.

i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.

1
28 tháng 6 2017

Câu a: Đúng     Câu b: Sai     Câu c: Sai

Câu d: Đúng     Câu e: Đúng     Câu f: Sai

Câu g: Đúng     Câu h: Đúng     Câu i: Sai

Mỗi câu sau đây đúng hay sai ? a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy e) Giao...
Đọc tiếp

Mỗi câu sau đây đúng hay sai ?

a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy

d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy

e) Giao điểm ba đường phân giác của một tam giác là tâm đường tròn nội tiếp tam giác ấy

f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy

g) Tứ giác có tổng độ dài các cặp cạnh đối bằng nhau thì ngoại tiếp được đường tròn

h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn

i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó

1
8 tháng 6 2017

Các câu đúng : a, d, e, g, h

Các câu sai : b, c, f, i

18 tháng 9 2018

A B C D O E F K M

a) Ta thấy: Điểm K nằm trên đường tròn ngoại tiếp \(\Delta\)BDE nên tứ giác DKBE nội tiếp đường tròn

=> ^BEK = ^BDK (2 góc nội tiếp cùng chắn cung BK) hay ^AEK = ^FDK

Mà tứ giác DKFC nội tiếp đường tròn => ^FDK = ^FCK 

Nên ^AEK = ^FCK hay ^AEK = ^ACK => Tứ giác AKCE nội tiếp đường tròn

=> ^KAE = ^KCD (Cùng bù ^KCE) hay ^KAB = ^KCD

Do tứ giác BKDE nội tiếp đường tròn nên ^KDE = ^KBA hay ^KBA = ^KDC

Xét \(\Delta\)DKC và \(\Delta\)BKA có: ^KAB = ^KCD; ^KBA = ^KDC => \(\Delta\)DKC ~ \(\Delta\)BKA (g.g)

=> \(\frac{KC}{KA}=\frac{KD}{KB}\Rightarrow\frac{KC}{KD}=\frac{KA}{KB}\).

Đồng thời ^DKC = ^BKA => ^DKC + ^BKC = ^BKA + ^BKC => ^BKD = ^AKC

Xét \(\Delta\)KBD và \(\Delta\)KAC có: ^BKD = ^AKC; \(\frac{KC}{KD}=\frac{KA}{KB}\)=> \(\Delta\)KBD ~ \(\Delta\)KAC (c.g.c)

=> ^KBD = ^KAC hoặc ^KBF = ^KAF => Tứ giác AKFB nội tiếp đường tròn

=> ^BKF = ^BAF (2 góc nội tiếp chắn cung BF) => ^BKF = ^BAC = ^BDC (Do ^BAC và ^BDC cùng chắn cung BC) (1)

Ta có: ^BDC = ^FDC = ^FKC (Cùng chắn cung FC)  (2)

Xét \(\Delta\)BMC: ^BMC + ^MBC + ^MCB = 1800. Mà ^MBC = ^BAC; ^MCB = ^BDC (Góc tạo bởi tiếp tuyến và dây cung)

Nên ^BAC + ^BDC + ^BMC = 1800    (3)

Thế (1); (2) vào (3) ta được: ^BKF + ^FKC + ^BMC = 1800 => ^BKC + ^BMC = 1800

=> Tứ giác BKCM nội tiếp đường tròn (đpcm).

b) Ta có: ^BKF = ^BDC (cmt) => ^BKF = ^BDE = ^BKE (Do tứ giác DKBE nội tiếp đường tròn)

Mà 2 điểm F và E nằm cùng phía so với BK => 3 điểm K;F;E thẳng hàng. Hay F nằm trên KE (*)

Mặt khác: ^BKF = ^CKF (Vì ^BKF = ^BAC; ^CKF = ^BDC; ^BAC = ^BDC)

=> ^BKE = ^CKE (Do K;F;E thẳng hàng) => ^KE là phân giác của ^BKC (4)

Xét tứ giác BKCM nội tiếp đường tròn: ^MBC = ^MKC; ^MCB = ^MKB 

Lại có: \(\Delta\)BCM cân ở M do MB=MC (T/c 2 tiếp tuyến giao nhau) => ^MBC=^MCB

Từ đó: ^MKC = ^MKB => KM là phân giác của ^BKC (5)

Từ (4) và (5) suy ra: 3 điểm K;M;E thẳng hàng. Hoặc M nằm trên KE (**)

Từ (*) và (**) => 3 điểm E;M;F thẳng hàng (đpcm).

4 tháng 5 2023

Cho em xin đáp án câu c bài này ah 

1 tháng 6 2017

D K A C B O E F I

Câu a:

Vì ABCD nội tiếp đường tròn tâm (O) mà AB là đường kính nên \(\widehat{ACB}=\widehat{ADB}=90^0\)Nên hai tam giác \(\Delta ACB;\Delta ADB\)Vuông tại C và D . áp dụng pitago cho hai tam giác vuông:

\(\hept{\begin{cases}AC^2+BC^2=AB^2\\AD^2+BD^2=AB^2\end{cases}\Leftrightarrow AC^2+BC^2=AD^2+BD^2\left(dpcm\right)}\) 

Câu b:

Vì E,F là trung điểm của AC ;AD nên \(\hept{\begin{cases}AD⊥OF\\AC⊥OE\end{cases}\Leftrightarrow\hept{\begin{cases}\widehat{AED}=90^0\\\widehat{AFO}=90^0\end{cases}}}\)Nên tứ giác AEOF nội tiếp nội tiếp đường tròn đường kính AO tức đường tròn nội tiếp AEOF đường tròn tâm I là trung điểm của AO

Câu c:

vì O,F là trung điểm của AB và AD nên OF là đường trung bình của \(\Delta ABD\)Nên OF // BD \(\Rightarrow\widehat{AOF}=\widehat{ABD\left(1\right)}\)

Mà \(\widehat{AEK}=\widehat{AOF}\left(2\right)\)( góc \(\widehat{AEF}\)chính là góc \(\widehat{AEK}\))

Mặt khác : \(\widehat{AEK}=\widehat{ADK}\left(3\right)\)Từ 1,2,3 ta có : \(\widehat{ADK}=\widehat{ABD}=\frac{1}{2}\widebat{AD}\)nên KD là tiếp tuyến của đường tròn (O) tại D

  • AEDK là hình chữ nhật khi và chỉ khi hai đường chéo \(AD=EK\)và F là trung điểm của EK

A E C D K F

nên EF Là đường trung bình của  \(\Delta ACD\) \(\Rightarrow\)EF // DC \(\Rightarrow\widehat{AEK}=\widehat{ACD}\)(So le trong) mà AEKD là HCN \(\Rightarrow\widehat{DAC}=\widehat{AEK}\)\(\Rightarrow\widehat{DAC}=\widehat{ACD}\)Hay \(\Delta ACD\)cân tại D