K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

Do MNPQ là hình bình hành mà muốn MNPQ là hình thoi => MQ=QP .

MQ=1/2 AD

QP=1/2 BC 

=> AD=BC . Vậy tứ giác ABCD có AD=BC thì MNPQ là hình thoi 

16 tháng 11 2018

rảnh thế đưa câu hỏi rồi tự mik trả lời

25 tháng 11 2021

a/

Xét \(\Delta ABC\) có

MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)

Xét \(\Delta ADC\) có

QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\)  (3) Và PQ // AC (4)

Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)

Ta có MN // AC (2)

Xét tg ABD có 

MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)

Gọi O là giao của MP và NQ. Từ  (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)

\(\Rightarrow AC\perp BD\) 

Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau

c/

Nếu MNPQ là hình thoi => QM=MN (1)

Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)

Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)

Từ (1) (2) và (3) => AC=BD

Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau

2 tháng 10 2017

lười gõ =_=

link ây : https://olm.vn/hoi-dap/question/423397.html

tự làm nha

2 tháng 10 2017

a) Tam giác ABC có :

MA = MB (gt)

NB = NC (gt)

nên MN là đường trung bình của tam giác, do đó MN // AC và MN = AC

Chứng minh tương tự : PQ // AC và PQ = AC

Suy ra MN // PQ và MN = PQ.

Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hình bình hành

b) Theo a), ta có: MQ = 1/2 AD (1)

Xét tam giác ABC có: MA = MB ; NA = NC

=>MN là đường trung bình của tam giác ABC

=> MN = 1/2 BC (2)

Từ (1) và (2) và AD=BC (ABCD là thang cân)

=> MQ = MN

Hình bình hành MNPQ có MQ = MN 

=> MNPQ là hình thoi

25 tháng 11 2021

Nối B với D
Xét ΔABD có :
AM = BM (gt)
AQ = DQ (gt)
=> QM là đường tb của ΔABD
=> QM // BD , QM = 1/2 BD(1)
Chứng minh tương tự ΔBCD
=> NP là đường tb của ΔBCD
=> NP // BD , NP = 1/2 BD (2)
Từ (1) và (2 ) => Tứ giác MNPQ là hình bình hành (dhnb)(đcpcm)
 

6 tháng 9 2018

b) Để PQRS là hình thoi ⇔ PQ = PS ⇔ BC = AD . Vậy tứ giác ABCD phải thêm điều kiện BC = AD thì PQRS là hình thoi.