K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

Nối AC ,nối BD 

Xét tam giác ABD .Ta có:

AQ =QD(gt)

AM =MB(gt)

=>QM là đg trung bình tam giác ABD.=> QM // BD ,QM =1/2 DB 

xét tam giác BDC có :

NB = NC(gt)

PD =PC (gt)

=> PN là đg trung bình tam giác PDC.=>PN//BD,PN =1/2 BD

Vì: QM //DB,QM =1/2 DB

PN  //BD;PN=1/2 DB

=>QM // PN;QM = 1/2 BD=PN

vậy MNPQ là hình bình hành ( tứ giác có một cạnh đối song song và bằng nhau)

b)để hình bình hành MNPQ là hình chữ nhật ta cần góc Q =90 độ(hình bình hành có 1 góc vuông là hình chữ nhật)

12 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

19 tháng 12 2021

Đề sai rồi bạn

a: Xét tứ giác ABPD có 

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD
P là trung điểm của CD

Do đó: QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

b: Để MNPQ là hình thoi thì MN=MQ

hay AC=BD

25 tháng 11 2021

a/

Xét \(\Delta ABC\) có

MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)

Xét \(\Delta ADC\) có

QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\)  (3) Và PQ // AC (4)

Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)

Ta có MN // AC (2)

Xét tg ABD có 

MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)

Gọi O là giao của MP và NQ. Từ  (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)

\(\Rightarrow AC\perp BD\) 

Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau

c/

Nếu MNPQ là hình thoi => QM=MN (1)

Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)

Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)

Từ (1) (2) và (3) => AC=BD

Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau

a: Xét ΔABD có 

M là tđiểm của AB

Q là tđiểm của AD
Do đó:MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N là tđiểm của BC

P là tđiểm của CD

Do đó: NP là đường trung bình

=>NP=BD/2 và NP//BD(2)

Xét ΔABC có 

M là tđiểm của AB

N là tđiểm của BC

Do đó: MN là đường trung bình

=>MN=AC/2=BD/2(3)

Từ (1) và (3) suy ra MN=MQ

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

mà MN=MQ

nên MQPN là hình thoi

 

25 tháng 11 2021

Nối B với D
Xét ΔABD có :
AM = BM (gt)
AQ = DQ (gt)
=> QM là đường tb của ΔABD
=> QM // BD , QM = 1/2 BD(1)
Chứng minh tương tự ΔBCD
=> NP là đường tb của ΔBCD
=> NP // BD , NP = 1/2 BD (2)
Từ (1) và (2 ) => Tứ giác MNPQ là hình bình hành (dhnb)(đcpcm)