Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a: Gọi G là trung điểm của AC
Xét ΔADC có
E là trung điểm của AD
G là trung điểm của AC
Do đó; EG là đường trung bình
=>EG//DC và EG=DC/2
Xét ΔCAB có
G là trung điểm của AC
F là trung điểm của BC
Do đó: GF là đường trung bình
=>GF//AB và GF=AB/2
Xét ΔGEF có GE+GF>EF
nên \(EF< \dfrac{AB+CD}{2}\)
b: Để \(EF=\dfrac{AB+CD}{2}\) thì EF=EG+GF
=>E,G,F thẳng hàng
=>AB//CD
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
Câu a) làm ý như câu b) bài 2)
bâu b) chứng minh giống ý a bài 2 ta được AECF là hình bình hành
nên AF//CE => FM//EN (5)
Tam giác ABM=tam giác CDN (cgc) suy ra AM=CN
mà EN=1/2AM (t/c đường trung bình của tam giác)
FM=1/2 NC (t/c đường trung bình của tam giác)
do đó EN=MF (6)
từ (5) và (6) suy ra EMFN là hình bình hành.
câuc) I và J lần lượt là trung điểm của BC và AD
nên IJ đi qua trung điểm của EF (7)
MN và EF là hai đường chéo của hình bình hành ENFM nên MN đi qua trung điểm của EF (8)
Từ (7) và (8) suy ra 3 đường thẳng IJ, MN, EF đồng quy tại 1 điểm