K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
19 tháng 8 2018
Tứ giác AMBK là hình bình hành => AM // BK; AK // BM hay AD // BK; AK // BC
Ta có: \(\Delta\)BAD cân tại A => ^ADB = ^ABD. Mà AD // BK => ^ADB = ^KBD
Nên ^ABD = ^KBD => BD là phân giác của ^ABK.
Chứng minh tương tự ta được: AC là phân giác của ^BAK.
Xét \(\Delta\)AKB có: BD là phân giác ^ABK; AC là phân giác ^BAK; AC giao BD ở O
=> KO là phân giác ^AKB hay KN là phân giác ^AKB => ^BKN = ^AKB/2
Mà ^AKB = 1800 - ^KBN (Do AK // BN) => ^BKN = (1800 - ^KBN) /2
=> \(\Delta\)NBK cân tại B => BN=BK. Lại có BK=AM (Do tứ giác AMBK là hbh)
=> BN=AM (đpcm).