Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác BOC vuông tại O có: OB^2 +OC^2 =BC^2 (ĐL Py-ta-go)
=> OB^2= BC^2 -OC^2=15^2 -OC^2 =225-OC^2 (1)
xét tam giác DOC vuông tại O có: OC^2 +OD^2=Dc^2
=.> OD^2=DC^2-OC^2=24^2 -OC^2=576- OC^2 (2)
xét tam goác AOD vuông tại O có: OD^2+OA^2=AD^2
=> OA^2= AD^2-OD^2=20^2 -OD^2 (3)
thay (2) vào (3) ta đc: OA^2 = 400-576+ OC^2=OC^2-176 (4)
Xét tam giác AOB vuông tại O có : OA^2+OB^2=AB^2 (5)
thay (1),(4) vào (5) ta đc: AB^2=OC^2-176 +225-OC^2=49
=>AB=7(vì AB>0)
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
Xet tam giac AOB OA^2+OB^2=AB^2
CM Tuong Tu: OD^2=AD^2-OA^2 :OC^2=BC^2-OB^2 (1)
Co DC^2=OD^2+OC^2 (2)
Thay (1) vao (2)Ta duoc
AD^2+BC^2-(OA^2+OB^2)=DC^2 =>4^2+7^2-8^2=DC^2=>DC=1cm
a, Xét △DAB và △CBD có:
∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)
=> △DAB ∼ △CBD (g.g)
Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ
mà ∠ADB=∠DCB => ∠DCB=30 độ (1)
Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)
Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ
=> △IDC cân tại I
Cho tứ giác ABCD, 2 đường chéo vuông góc tại O. Biết BC=15cm, CD=24cm và AD=20cm. Tính độ dài AB
Đáp Số hình như là 7 cm còn cách giải thì ???
BC=15cm;CD=24CM;AD=20CM.
(15+24+20):3=19CM
19CM.
K CHO MINH NHA