K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 1 2021

\(\overrightarrow{AB}.\overrightarrow{BD}=-\overrightarrow{BA}.\overrightarrow{BD}=-a.a.cos60^0=-\dfrac{a^2}{2}\)

28 tháng 1 2021

Gọi MM là trung điểm của CD.

Ta có CD→.AM→=0→ và CD→.MB→=0→.

Do đó →CD.→AB=→CD.(→AM+→MB)=→CD.→AM+→CD.→MB=⃗0

Suy ra AB⊥CD nên số đo góc giữa hai đường thẳng AB và CD bằng 900.

NV
17 tháng 4 2022

\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{BM}+\overrightarrow{MN}+\overrightarrow{ND}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{BM}\right)+\left(\overrightarrow{NC}+\overrightarrow{ND}\right)\)

\(=2\overrightarrow{MN}\)

\(\Rightarrow\) A đúng nên D sai

17 tháng 4 2022

C. 

NV
5 tháng 2 2021

Hướng dẫn (khuya quá rồi).

Trong mp (ADN), lấy Q thuộc AD sao cho \(NP||GQ\)

\(\Rightarrow\left(\overrightarrow{MG};\overrightarrow{NP}\right)=\left(\overrightarrow{MG};\overrightarrow{GQ}\right)=180^0-\widehat{MGQ}\)

Áp dụng định lý hàm cos là tính được (\(GP=\dfrac{2}{3}NP\) ; tính MQ dựa vào hàm cos tam giác AMQ)

5 tháng 2 2021

a có thể hướng dẫn kĩ hơn giúp e được ko ạ :(

17 tháng 2 2021

1/ \(\overrightarrow{AM}=3\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MG}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MA}+3\overrightarrow{AG}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AM}=3\overrightarrow{AG}\)

Ban tu ket luan

2/ Bạn coi lại đề bài, đẳng thức kia có vấn đề. 2k-1IB??

17 tháng 2 2021

\(\overrightarrow{IA}+2k-1+\overrightarrow{IB}+k\overrightarrow{IC}+\overrightarrow{ID}=0\)

31 tháng 3 2017

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11

NV
14 tháng 3 2022

\(\dfrac{MA}{MB}=k\Rightarrow MA=kMB=k\left(AB-AM\right)\Rightarrow MA=\dfrac{k}{k+1}AB\)

\(\Rightarrow\overrightarrow{MA}=\dfrac{k}{k+1}\overrightarrow{BA}\)

Tương tự: \(\overrightarrow{CN}=\dfrac{k}{k+1}\overrightarrow{CD}\)

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AC}+\overrightarrow{CN}=\dfrac{k}{k+1}\overrightarrow{BA}+\overrightarrow{AC}+\dfrac{k}{k+1}\overrightarrow{CD}\)

\(=\dfrac{k}{k+1}\left(\overrightarrow{BD}+\overrightarrow{DA}\right)+\overrightarrow{AC}+\dfrac{k}{k+1}\overrightarrow{CD}\)

\(=\dfrac{k}{k+1}\overrightarrow{BD}+\dfrac{k}{k+1}\left(\overrightarrow{CD}+\overrightarrow{DA}\right)+\overrightarrow{AC}\)

\(=\dfrac{k}{k+1}\overrightarrow{BD}-\dfrac{k}{k+1}\overrightarrow{AC}+\overrightarrow{AC}\)

\(=\dfrac{k}{k+1}\overrightarrow{BD}+\dfrac{1}{k+1}\overrightarrow{AC}\)