Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: 3+3^3+3^5+...+3^1991 = (3+3^3+3^5)+...+(3^1987+1989+1991) =3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4) =3.91+...+3^1987.91 =(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13 3+3^3+3^5+...+3^1991 =(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991) =3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6) =3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41
Đề sai nha
S=3+32+33+...+3223
S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)
S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)
S=9840+...+3215.9840
S=9840.(1+...+3215)
S=41.240.(1+...+3215)\(⋮\)41
Vậy S\(⋮\)41
Chúc bn học tốt
Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak
\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)
=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)
=> \(3S-S=3^{224}-1\)
=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên
Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)
mà \(3^8-1=6560=41.160⋮41\)
=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)
=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.
\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)
\(=1.120+3^5.120+...+3^{97}.120\)
\(=\left(1+3^5+...+3^{97}\right).120\)
\(\Rightarrow S⋮120\)
Vậy ........
Ta có :
\(S=4+3^2+3^3+.....+3^{223}\)
\(=1+3+3^2+3^3+....+3^{223}\)
\(\Rightarrow3S=3+3^2+3^3+3^{224}\)
\(\Leftrightarrow S=\frac{3^{224}-1}{2}=\frac{\left(3\right)^{4^{56}}-1}{2}\)
Vì \(3^4\equiv-1\left(mod41\right)\)
\(\Rightarrow3^{4^{56}}\equiv1\left(mod41\right)\)
\(\Leftrightarrow3^{4^{56}}-1\equiv0\left(mod41\right)\)
\(\Leftrightarrow\frac{3^{4^{56}}-1}{2}\equiv0\left(mod41\right)\)
Hay \(S⋮41\) ( đpcm )
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
S=4+32+33+...+3223
S=1+3+32+33+...+3223
S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)
S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)
S=82+3.82+32.82+33.82+...+3119.(1+34)
S=82(3+32+33+...+3119)
vì 82⋮41⇒S⋮41
Vậy S⋮41