Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/chất dãy tỉ dố bẳng nhau , ta có :
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)
Cho dù a khác c thì a + b + c + d = 1
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)
Nhân vế (1) và (2) lại ta được:
\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
b/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
c/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\Rightarrow\frac{a+b}{a}=\frac{c+d}{c}.\)
d/ Từ câu c có \(\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
a+b/b+c=c+d/d+a =>a+b/c+d=b+c/d+a=>(a+b/c+d)+1=(b+c/a+d)+1
<=>a+b+c+d/c+d=a+b+c+d/a+d (1)
-Xet 2 truong hop
+TH1:a+b+c+d khác 0 thì :
Từ (1) tả co : c+d = a+d
<=>a=c
Ma a khac c nen truong hop nay loai
+TH2: Nếu a+b+c+d=0 thi:
a+b+c+d/c+d=a+b+c+d/a+d
<=>0=0(luon dung)
Vay a+b+c+d =0
Em học lớp 6 nên em nghĩ làm nhu thế này ạ :
Ta thấy a = 1
b = 2
c = 3
d = 4
Ta có : \(\frac{1+2}{2+3}\)\(=\frac{3+4}{4+1}\)
Nên : a + b + c + d = 1 + 2 + 3 + 4 = 10