Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b/b+c=c+d/d+a =>a+b/c+d=b+c/d+a=>(a+b/c+d)+1=(b+c/a+d)+1
<=>a+b+c+d/c+d=a+b+c+d/a+d (1)
-Xet 2 truong hop
+TH1:a+b+c+d khác 0 thì :
Từ (1) tả co : c+d = a+d
<=>a=c
Ma a khac c nen truong hop nay loai
+TH2: Nếu a+b+c+d=0 thi:
a+b+c+d/c+d=a+b+c+d/a+d
<=>0=0(luon dung)
Vay a+b+c+d =0
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)
Nhân vế (1) và (2) lại ta được:
\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
a) vì a/b= c/d nên ta có a/b=c/d=k suy ra a=kb ; c=kd ta co :a/a-b=kb/kb-b =kb/b.(k-1)=k/k-1 (1) ta có:c/c-d=kd/kd-d=kd/d.(k-1)=k/k-1 (2) Từ (1) và (2) suy ra a/a-b=c/c-d b) ta có:a+b/b=kb+b/b=b.(k+1) /b=k+1 (1) c+d/d=kd+d/d=d+(k+1)/d=k+1 (2) từ (1) và (2) suy ra a+b/b=c+d/d
Áp dụng t/chất dãy tỉ dố bẳng nhau , ta có :
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)
Cho dù a khác c thì a + b + c + d = 1