K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Cho t/giác ABC , kẻ AH vuông BC . Ở phía ngoài t/giác ABC vẽ các tam giác vuông cân tại A là t/giác ABD và t/giác ACE . Kẻ DM , EN vuông với AH . Chứng minh DM = EN

30 tháng 7 2019

Ta có: ∠(BAH) +∠(BAD) +∠(DAM) =180o(kề bù)

Mà ∠(BAD) =90o⇒∠(BAH) +∠(DAM) =90o(1)

Trong tam giác vuông AMD, ta có:

∠(AMD) =90o⇒∠(DAM) +∠(ADM) =90o(2)

Từ (1) và (2) suy ra: ∠(BAH) =∠(ADM)

Xét hai tam giác vuông AMD và BHA, ta có:

∠(BAH) =∠(ADM)

AB = AD (gt)

Suy ra: ΔAMD= ΔBHA(cạnh huyền, góc nhọn)

Vậy: AH = DM (hai cạnh tương ứng) (3)

9 tháng 4 2016

D B C E N M A H

                                          a,   có góc ADM+DAM=90độ

                                             có góc DAM+DAB+BAH=90độ

                                             =>DAM+BAH=90 độ=>BAH=ADM

có DAM+ADM=90 độ

có BAH+ABH=90 độ

mà ADM=BAH=>ABH=DAM

xét tg DAM và tg BAH

     AB=AD

góc ADM=BAH     => tg DAM=tg ABH(g.c.g)

góc DAM=ABH

=> DM=AH(2 cạnh t/ứ)

b, nối D,E 

 xét tg NEA và tg AHC giống ý a, rùi có NE=AH mà DM=AH => DM=NE

gọi giao điểm của DE và NA là T => NTE=DTM(đối đỉnh)

Xét tg MDT và tg NET

NE=DM

NET=TDM(2 góc kia = nhau thì góc này =)                        => tgMTD=tgNET(g.c.g)

ENT=DMT(=90 độ)

=> DT=ET(2 cạnh t.ứ)=> MN đi qua trung điểm của DE

c, có EAC=DAB(=90độ)=> EAC+BAC=DAB+BAC(1)

DA=BA(2),     CA=EA(3)

từ 1,2 3 => 2 tg đó = nhau

30 tháng 7 2018

Ta có: ∠(HAC) +∠(CAE) +∠(EAN) =180o(kề bù)

Mà ∠(CAE) =90o⇒∠(HAC) +∠(EAN) =90o (4)

Trong tam giác vuông AHC, ta có:

∠(AHC) =90o⇒∠(HAC) +∠(HCA) =90o (5)

Từ (4) và (5) suy ra: ∠(HCA) =∠(EAN) ̂

Xét hai tam giác vuông AHC và ENA, ta có:

∠(AHC) =∠(ENA) =90o

AC = AE (gt)

∠(HCA) =∠(EAN) ( chứng minh trên)

Suy ra : ΔAHC= ΔENA(cạnh huyền, góc nhọn)

Vậy AH = EN (hai cạnh tương ứng)

Từ (3) và (6) suy ra: DM = EN

Vì DM ⊥ AH và EN ⊥ AH (giả thiết) nên DM // EN (hai đường thẳng cùng vuông góc với đường thẳng thứ ba)

Gọi O là giao điểm của MN và DE

Xét hai tam giác vuông DMO và ENO, ta có:

∠(DMO) =∠(ENO) =90o

DM= EN (chứng minh trên)

∠(MDO) =∠(NEO)(so le trong)

Suy ra : ΔDMO= ΔENO(g.c.g)

Do đó: DO = OE ( hai cạnh tương ứng).

Vậy MN đi qua trung điểm của DE

Giải sách bài tập Toán 7 | Giải sbt Toán 7

31 tháng 1 2022

a)- Ta có: △ABD vuông tại A và \(AB=AD\left(gt\right)\)

=>△ABD vuông cân tại A.

- Ta có: \(\left[{}\begin{matrix}DM\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(DM\)//\(BC\).

=>\(\widehat{BDM}+\widehat{DMH}=180^0\) (2 góc trong cùng phía).

=>\(\widehat{ADM}+\widehat{ADB}+\widehat{ABH}+\widehat{ABD}=180^0\).

Mà \(\widehat{ADB}=\widehat{ABD}=45^0\)(△ABD vuông cân tại A)

=>\(\widehat{ADM}+45^0+\widehat{ABH}+45^0=180^0\)

=>\(\widehat{ADM}+\widehat{ABH}+90^0=180^0\)

=>\(\widehat{ADM}+\widehat{ABH}=90^0\)

Mà \(\widehat{ADM}+\widehat{MAD}=90^0\) (△ADM vuông tại M).

=>\(\widehat{ABH}=\widehat{MAD}\).

- Xét △ADM vuông tại M và △BAH vuông tại H có:

\(AD=AB\left(gt\right)\)

\(\widehat{ABH}=\widehat{MAD}\) (cmt)

=>△ADM  = △BAH (cạnh huyền-góc nhọn).

=>\(DM=AH\) (2 cạnh tương ứng).

b) - Sửa đề: Gọi I là trung điểm của MN.

- Ta có: △ACE vuông tại A và \(AC=AE\left(gt\right)\)

=>△ACE vuông cân tại A.

- Ta có: \(\left[{}\begin{matrix}EN\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(EN\)//\(BC\).

=>\(\widehat{NEC}+\widehat{HCE}=180^0\) (2 góc trong cùng phía).

=>\(\widehat{AEN}+\widehat{AEC}+\widehat{ACE}+\widehat{ACB}=180^0\).

Mà \(\widehat{AEC}=\widehat{ACE}=45^0\)(△ACE vuông cân tại A)

=>\(\widehat{AEN}+45^0+\widehat{ACB}+45^0=180^0\)

=>\(\widehat{AEN}+\widehat{ACB}+90^0=180^0\)

=>\(\widehat{AEN}+\widehat{ACB}=90^0\)

Mà \(\widehat{AEN}+\widehat{NAE}=90^0\) (△ANE vuông tại N).

=>\(\widehat{ACB}=\widehat{NAE}\).

- Xét △ANE vuông tại N và △CHA vuông tại H có:

\(AN=AC\left(gt\right)\)

\(\widehat{ACB}=\widehat{NAE}\) (cmt)

=>△ANE = △CHA (cạnh huyền-góc nhọn).

=>\(NE=AH\) (2 cạnh tương ứng) mà \(DM=AH\) (cmt)

=>\(NE=DM\).

- Xét △DMI và △ENI có:

\(\left[{}\begin{matrix}DM=NE\left(cmt\right)\\\widehat{DMI}=\widehat{ENI}=90^0\\MI=NI\left(IlàtrungđiểmMN\right)\end{matrix}\right.\)

=>△DMI = △ENI (c-g-c).

=>\(\widehat{DIM}=\widehat{EIN}\) (2 góc tương ứng).

Mà \(\widehat{DIM}+\widehat{DIN}=180^0\) (kề bù).

=>\(\widehat{EIN}+\widehat{DIN}=180^0\)

=>\(\widehat{EID}=180^0\) hay 3 điểm E,I,D thẳng hàng.

31 tháng 1 2022

- Hình vẽ:

undefined

28 tháng 12 2017

chép trong phần đáp án rồi.