Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).
TH1: \(h=0\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.
\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.
TH2: \(h=5\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.
\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.
Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.
Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.
Chữ số 2 xuất hiện 3 lần.
Coi chữ số đc lập nên từ 6 chữ số tập \(A=\left\{1,2,2,2,3,4\right\}\)
Gọi số cần lập là \(\overline{abcdef}\in A\)
Chọn a có 6 cách chọn.
Xếp 5 số của \(A\backslash\left\{a\right\}\) vào 5 vị trí còn lại có 5! cách xếp.
Mà chữ số 2 lặp lại 3 lần\(\Rightarrow\) có 3! cách xếp.
Vậy số các số cần lập:
\(\dfrac{6\cdot5!}{3!}=120\left(số\right)\)
Đáp án A
Thêm vào hai chữ số 1 vào tập hợp các chữ số đã cho ta được tập
Xem các số 1 là khác nhau thì mỗi hoán vị của 6 phần tử của E cho ta một số có 6 chữ số thỏa mãn bài toán. Như vậy ta có 6! số. Tuy nhiên khi hoán vị vủa ba số 1 cho nhau thì giá trị con số không thay đổi nên mỗi số như vậy ta đếm chúng đến 3! lần.
Vậy số các số thỏa mãn yêu cầu bài toán là số.
Chú ý: Ta có thể giải như sau, ta gọi số 6 chữ số cần tìm là , chọn 3 vị trí trong 6 vị trí để đặt ba chữ số 1 có cách, xếp 3 chữ số 2,3,4 vào ba vị trí còn lại có 3! cách do đó
Chọn A
Cách 1:
Ta có S là tập hợp các số tự nhiên gồm 9 chữ số được lập từ X = {6;7;8}, trong đó chữ số 6 xuất hiện 2 lần; chữ số 7 xuất hiện 3 lần; chữ số 8 xuất hiện 4 lần nên
Có cách xếp 2 chữ số 6 vào 2 trong 9 vị trí
Có cách xếp 3 chữ số 7 vào 3 trong 7 vị trí còn lại
Có 1 cách xếp 4 chữ số 8 vào 4 trong 4 vị trí còn lại
Chọn ngẫu nhiên một số từ tập S nên
Gọi A là biến cố “số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6”
TH1: 2 chữ số 6 đứng liền nhau
Có 8 cách xếp cho số .Trong mỗi cách như vậy có C 7 3 cách xếp chữ số 7 và 1 cách xếp cho các chữ số 8
Vậy có số 8. C 7 3 .1 = 280 số
TH2: Giữa hai số 6 có đúng 1 chữ số và số đó là số 8.
Có 7 cách xếp cho số .Trong mỗi cách như vậy có C 6 3 cách xếp chữ số 7 và 1 cách xếp các chữ số 8
Vậy có 7. C 6 3 = 140 số
TH3: Giữa hai số 6 có đúng 2 chữ số và đó là hai chữ số 8.
Tương tự Có 6. C 5 3 = 60 số
TH4: Giữa hai số 6 có đúng 3 chữ số và đó là ba chữ số 8.
Có 5. C 4 3 = 20 số
TH5: Giữa hai số 6 có đúng 4 chữ số và đó là bốn chữ số 8.
Có 4. C 4 3 = 4 số
Từ đó suy ra
Xác suất cần tìm là
Cách 2:
- Số phần tử không gian mẫu
- Tính số phần tử của biến cố A“số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6”
Xếp 2 số 6 có 1 cách:
Xếp 3 số 7 vào 2 khoảng cách ( số cách xếp bằng số nghiệm nguyên không âm của phương trình
Xác suất cần tìm là
Xét các số tự nhiên có bảy chữ số được lập từ {1;2;2;2;3;4;5;6;7}.
Ta thấy có số như vậy.
Tuy nhiên khi hoán vị vị trí của ba số 2 cho nhau thì số thu được không thay đổi.
Vậy có số thỏa yêu cầu bài toán.
chọn B.
Chọn 4 chữ số còn lại : \(C^4_6\)
Số số cần tìm : \(\dfrac{C^4_6\cdot7!}{3!}\)
Chữ số hàng đơn vị có 5 cách chọn
Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại
Số số thỏa mãn: \(5.A_8^2=...\)
Đáp án D