Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(AC=\sqrt{5^2-4^2}=3\left(cm\right)\)
2: Xét ΔABC có AC<AB
nên \(\widehat{ABC}< \widehat{ACB}\)
Hình tự vẽ:
a) AC = ?
Vì ΔABC cân tại A nên: AC = AB = 4 (cm)
b) So sánh: ∠ABC và ∠ACB, AC và AD
Vì ΔABC cân tại A nên: ∠ABC = ∠ACB
Vì ∠ABD = ∠ACB (gt) và ∠ABC = ∠ACB (cmt)
Mà AD € AC ⇒ D ≡ C ⇒ AC = AD
c) AE đi qua trung điểm của BC
Vì D ≡ C nên: AE ⊥ AC.
Xét hai tam giác vuông ABE và ACE có:
AB = AC (câu a)
∠B = ∠C (góc ở đáy)
Do đó: ΔABE = ΔACE (cạnh huyền - góc nhọn)
⇒ BE = CE (hai cạnh tương ứng)
⇒ E là trung điểm của BC
⇒ AE đi qua trung điểm của BC
d) AG = ?
Vì E là trung điểm của AC nên: BE = CE = BC : 2 = 5 : 2 = 2,5 (cm)
Áp dụng định lí Pytago vào ΔABE vuông tại E, ta có:
AB2 = AE2 + BE2 ⇒ AE2 = AB2 - BE2 = 42 - 2,52 = 16 - 6,25 = 9,75 (cm) ⇒ AE = \(\sqrt{9,75}\)
Vì BM cắt AE tại G nên G là trọng tâm của ΔABC, suy ra:
AG = \(\frac{2}{3}\)AE = \(\frac{2}{3}.\sqrt{9,75}=\frac{2.\sqrt{9,75}}{3}=\frac{\sqrt{39}}{3}\)
a: \(\widehat{ACB}=90^0-60^0=30^0\)
XétΔABC có \(\widehat{ACB}< \widehat{ABC}\)
nên AB<AC
b: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
BA=BD
góc ABC chung
Do đó;ΔBAC=ΔBDE
c: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
DO đó:ΔBAH=ΔBDH
SUy ra: \(\widehat{ABH}=\widehat{DBH}\)
hay BH là phân giác của góc ABC
cau 1 :
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm