Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
ai giup minh cau 2a khg
chiu nay co kiem tra rui
giup minh vs
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
a) Xét tam giác vuông ABC có :
Góc ACB = \(90^o-35^o\)
Góc ACB = \(55^o\)
b) Xét tam giác ABE và tam giác DBE có
Góc BAE= góc BDE \(\left(=90^o\right)\)
AB = BD (giả thiết)
BE là cạnh chung
Do đó tam giác ABE = tam giác DBE (cạnh huyền - cạnh góc vuông)
c) Xét tam giác EKA và tam giác ECD có
góc KAE = góc CDE \(\left(=90^o\right)\)
EA = ED (tam giác ABE = tam giác DBE)
góc KEA = góc CED ( đối đỉnh )
Do đó tam giác EKA = tam giác ECD (cạnh góc vuông - góc nhọn)
\(\Rightarrow EK=EC\) (hai cạnh tương ứng)
d) Ta có:
tam giác ABE vuông nên góc AEB là góc nhọn
\(\Rightarrow\) góc BEC là góc tù
\(\Rightarrow\) CB>EB (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (1)
Ta lại có :
tam giác KAE vuông tại A nên góc KEA là góc nhọn
\(\Rightarrow\) góc KEC là góc tù
\(\Rightarrow\) CK>EK (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (2)
Từ (1) và (2) ta có
EB+EK<CB+CK (đpcm)
Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)
CM: Xét t/giác ABD và t/giác EBD
có: AB = BE (gt)
\(\widehat{B_1}=\widehat{B_2}\)(gt)
BD : chung
=> t/giác ABD = t/giác EBD (c.g.c)
b) Ta có : t/giác ABD = t/giác EBD (cmt)
=> AD = DE (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)
c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE
AD = DE (cmt) => D \(\in\)đường trung trực của AE
mà B \(\ne\)D => BD là đường trung trực của AE
Hình tự vẽ:
a) AC = ?
Vì ΔABC cân tại A nên: AC = AB = 4 (cm)
b) So sánh: ∠ABC và ∠ACB, AC và AD
Vì ΔABC cân tại A nên: ∠ABC = ∠ACB
Vì ∠ABD = ∠ACB (gt) và ∠ABC = ∠ACB (cmt)
Mà AD € AC ⇒ D ≡ C ⇒ AC = AD
c) AE đi qua trung điểm của BC
Vì D ≡ C nên: AE ⊥ AC.
Xét hai tam giác vuông ABE và ACE có:
AB = AC (câu a)
∠B = ∠C (góc ở đáy)
Do đó: ΔABE = ΔACE (cạnh huyền - góc nhọn)
⇒ BE = CE (hai cạnh tương ứng)
⇒ E là trung điểm của BC
⇒ AE đi qua trung điểm của BC
d) AG = ?
Vì E là trung điểm của AC nên: BE = CE = BC : 2 = 5 : 2 = 2,5 (cm)
Áp dụng định lí Pytago vào ΔABE vuông tại E, ta có:
AB2 = AE2 + BE2 ⇒ AE2 = AB2 - BE2 = 42 - 2,52 = 16 - 6,25 = 9,75 (cm) ⇒ AE = \(\sqrt{9,75}\)
Vì BM cắt AE tại G nên G là trọng tâm của ΔABC, suy ra:
AG = \(\frac{2}{3}\)AE = \(\frac{2}{3}.\sqrt{9,75}=\frac{2.\sqrt{9,75}}{3}=\frac{\sqrt{39}}{3}\)