Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E K H N
a) Có: AB=AC
\(\Rightarrow\Delta ABC\) là tam giác cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABD}+\widehat{ABC}=180^o\) (kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^o\)(kề bù)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
Do At là phân giác của góc xAy
=>xAt=yAt
Xét TG(tam giác) ADB và TG CDA có:
AB=AC (GT)
xAt=yAt( chứng minh trên)
AD là cạnh chung
=>TG(tam giác) ADB = TG CDA (c.g.c)
Các cặp cạnh và góc tương ứng bằng nhau
Hình tự vẽ:
a) AC = ?
Vì ΔABC cân tại A nên: AC = AB = 4 (cm)
b) So sánh: ∠ABC và ∠ACB, AC và AD
Vì ΔABC cân tại A nên: ∠ABC = ∠ACB
Vì ∠ABD = ∠ACB (gt) và ∠ABC = ∠ACB (cmt)
Mà AD € AC ⇒ D ≡ C ⇒ AC = AD
c) AE đi qua trung điểm của BC
Vì D ≡ C nên: AE ⊥ AC.
Xét hai tam giác vuông ABE và ACE có:
AB = AC (câu a)
∠B = ∠C (góc ở đáy)
Do đó: ΔABE = ΔACE (cạnh huyền - góc nhọn)
⇒ BE = CE (hai cạnh tương ứng)
⇒ E là trung điểm của BC
⇒ AE đi qua trung điểm của BC
d) AG = ?
Vì E là trung điểm của AC nên: BE = CE = BC : 2 = 5 : 2 = 2,5 (cm)
Áp dụng định lí Pytago vào ΔABE vuông tại E, ta có:
AB2 = AE2 + BE2 ⇒ AE2 = AB2 - BE2 = 42 - 2,52 = 16 - 6,25 = 9,75 (cm) ⇒ AE = \(\sqrt{9,75}\)
Vì BM cắt AE tại G nên G là trọng tâm của ΔABC, suy ra:
AG = \(\frac{2}{3}\)AE = \(\frac{2}{3}.\sqrt{9,75}=\frac{2.\sqrt{9,75}}{3}=\frac{\sqrt{39}}{3}\)