Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABDC có
AB//DC
AB=DC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Xét tứ giác AOCD có AD//OC(gt) và AD=OC(gt)
nên AOCD là hình bình hành(dấu hiệu nhận biết hình bình hành)
\(\Rightarrow\)AO//CD và AO=CD(hai cạnh đối trong hình bình hành AOCD)
Ta có: AO//CD(cmt)
mà \(B\in AO\)
nên AB//CD
Ta có: AO=CD(cmt)
mà AO=AB(gt)
nên AB=CD
Xét tứ giác ABDC có AB//CD(cmt) và AB=CD(cmt)
nên ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)
\(\Rightarrow\)AC//BD(hai cạnh đối trong hình bình hành ABDC)(đpcm)
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a) vì Oz là tia phân giác của \(\widehat{xOy}\)
\(\Rightarrow\)\(\widehat{O_1}=\widehat{O_2}\)
xét \(\Delta OAC\)và \(\Delta OBC\)có :
OA = OB ( gt )
\(\widehat{O_1}=\widehat{O_2}\)( gt )
OC ( cạnh chung )
Suy ra : \(\Delta OAC\)= \(\Delta OBC\)( c.g.c )
b) xét \(\Delta OAI\)và \(\Delta OBI\)có :
OA = OB ( gt )
\(\widehat{O_1}=\widehat{O_2}\)( gt )
OI ( cạnh chung )
suy ra : \(\Delta OAI\)= \(\Delta OBI\)( c.g.c )
\(\Rightarrow\)\(\widehat{AIO}=\widehat{BIO}\)( 2 góc tương ứng )
Mà \(\widehat{AIO}+\widehat{BIO}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{AIO}=\widehat{BIO}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\)\(OC\perp AB\)
c)
Xét OC//AD=> \(\widehat{COA}=\widehat{DAB}\)(2 góc đồng vị)
Xét 2 tam giác AOC và BAD: OC=AD, \(\widehat{COA}=\widehat{DAB}\), OA=AB
=> \(\Delta AOC=\Delta BAD\left(c.g.c\right)\Rightarrow\widehat{CAO}=\widehat{DBA}\)ở vị trí đồng vị => AC//BD