K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Em tự vẽ hình nhé.

Ta có: \(\frac{AD}{HD}=\frac{S_{ABC}}{S_{BHC}};\frac{BE}{HE}=\frac{S_{ABC}}{S_{AHC}};\frac{CF}{FH}=\frac{S_{ABC}}{S_{AHB}}\)

Đặt \(S_{ABC}=1;S_{BHC}=a;S_{ACH}=b;S_{AHB}=c.\)

Khi đó ta có: \(a+b+c=1;\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng bất đẳng thức Cosi cho 3 số dương, ta có:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Vậy thì \(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) mà a + b + c = 1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\Rightarrow\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\ge9\)

4 tháng 9 2016

cam on nha

3 tháng 5 2021

đó nha bn

3 tháng 5 2021

a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)

Do đó: tg HDB đồng dạng tg DCA (g.g)

Suy ra: HD/DC=BD/DA-> bd*dc=dh*da

b, HD/HA=SBHC/SABC

HE/BE=SAHC/SABC

HF/CF=SHAB/SABC

HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1

9 tháng 4 2020
(3x+5)-(2x-1)=4x-2
15 tháng 4 2020

Hơi khó nên tui dung tạm BĐT vậy , bạn thông cảm ^ ^

A B C H E F H

\(S\left(ABC\right)=AD.\frac{BC}{2}\)

\(S\left(BHC\right)=HD.\frac{BC}{2}\)

 \(\Rightarrow\frac{HD}{AD}=\frac{S\left(BHC\right)}{S\left(ABC\right)}\left(1\right)\)

Tương tự:

\(\frac{HE}{BE}=\frac{S\left(AHC\right)}{S\left(ABC\right)}\left(2\right)\)

\(\frac{HF}{CF}=\frac{S\left(AHB\right)}{S\left(ABC\right)}\left(3\right)\)

(1) + (2) +(3) được:

\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\left[S\left(BHC\right)+S\left(AHC\right)+\frac{S\left(AHB\right)}{S\left(ABC\right)}\right]=\frac{S\left(ABC\right)}{S\left(ABC\right)}=1\)

Áp dụng bất đẳng thức:  \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)9 ta có:

 \(\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)\left(\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\right)\ge9\)

mà: \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\) \(\Rightarrow\left(\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\right)\ge9\)

1 tháng 5 2021

Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/AD

Đây nhé

1 tháng 5 2023

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh

 

 

30 tháng 6 2019

Ad ĐỪNG XÓA 

 Học tiếng anh free vừa học vừa chơi đây 

các bạn vào đây đăng kí nhá :   https://iostudy.net/ref/165698

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiêp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có

góc DAB=góc DCH

=>ΔDAB đồng dạng vơi ΔDCH

=>DA/DC=DB/DH

=>DA*DH=DB*DC

c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

=>ΔHDC đồng dạng vơi ΔHFA

=>HD/HF=HC/HA

=>HF*HC=HD*HA

Xet ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE=HD*HA