Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát g/s: MN<MP => NH=7 ; HP=12
Ta có:
\(NP=NH+HP=7+12=19\)
\(MP^2=HP.NP=12.19=228\Rightarrow MP=2\sqrt{57}\)
\(NM^2=NH.NP=7.19=133\Rightarrow NM=\sqrt{133}\)
Vậy
a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH*NP=MN*MP
=>MH*10=6*8=48
=>MH=4,8cm
Xét ΔMNP có MD là phân giác
nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)
c: MN*sinP+MP*sinN
=MN*MN/NP+MP*MP/NP
=(MN^2+MP^2)/NP
=NP^2/NP
=NP
b: \(\widehat{NMH}+\widehat{N}=90^0\)
\(\widehat{P}+\widehat{N}=90^0\)
Do đó: \(\widehat{NMH}=\widehat{P}\)
2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:
\(MD\cdot MN=MH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:
\(ME\cdot MP=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)
Cái này là giải tam giác, em muốn làm được thì đọc lại lý thuyết về: Định nghĩa các giá trị lượng giác sin, cos, tam và cotan, về định lý Pita go và hệ thức lượng trong tam giác là có thể giải được :) Nếu em mới bắt đầu lên lớp 9 thì cô khuyên nên học hình cẩn thận ngay từ đầu vì nó sẽ khá khó ^^
Cô sẽ giúp bài này nhé :)
Xét tam giác vuông ABH, ta có: \(sinABH=\frac{AH}{AB}=\frac{2}{4}=\frac{1}{2}\)
Vậy góc B = 30 độ. Từ đó góc C = 60 độ.
Do góc B=30 độ nên \(cosB=\frac{BA}{BC}=\frac{4}{BC}=cos30=\frac{\sqrt{3}}{2}\)
Vậy \(BC=\frac{8\sqrt{3}}{3}\)
Từ đo có thể dùng Pitago hoặc định nghĩa lượng giác tìm \(AC=\frac{4\sqrt{3}}{3}\)