Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Câu 4:
\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)
Cái này là giải tam giác, em muốn làm được thì đọc lại lý thuyết về: Định nghĩa các giá trị lượng giác sin, cos, tam và cotan, về định lý Pita go và hệ thức lượng trong tam giác là có thể giải được :) Nếu em mới bắt đầu lên lớp 9 thì cô khuyên nên học hình cẩn thận ngay từ đầu vì nó sẽ khá khó ^^
Cô sẽ giúp bài này nhé :)
Xét tam giác vuông ABH, ta có: \(sinABH=\frac{AH}{AB}=\frac{2}{4}=\frac{1}{2}\)
Vậy góc B = 30 độ. Từ đó góc C = 60 độ.
Do góc B=30 độ nên \(cosB=\frac{BA}{BC}=\frac{4}{BC}=cos30=\frac{\sqrt{3}}{2}\)
Vậy \(BC=\frac{8\sqrt{3}}{3}\)
Từ đo có thể dùng Pitago hoặc định nghĩa lượng giác tìm \(AC=\frac{4\sqrt{3}}{3}\)