K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMND vuông tại M và ΔHND vuông tại H có 

ND chung

\(\widehat{MND}=\widehat{HND}\)(ND là tia phân giác của \(\widehat{MNH}\))

Do đó: ΔMND=ΔHND(cạnh huyền-góc nhọn)

7 tháng 5

ko biết :)

 

1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔNMI=ΔNKI

Suy ra: NM=NK

hay ΔNMK cân tại N

2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có

IM=IK

\(\widehat{MIQ}=\widehat{KIP}\)

Do đó: ΔMIQ=ΔKIP

Suy ra: MQ=KP

Ta có: NM+MQ=NQ

NK+KP=NP

mà NM=NK

và MQ=KP

nên NQ=NP

hayΔNQP cân tại N

3: Xét ΔNQP có 

NM/MQ=NK/KP

nên MK//QP

a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có

NQ chung

\(\widehat{MNQ}=\widehat{HNQ}\)

Do đó: ΔMNQ=ΔHNQ

b: ta có: ΔMNQ=ΔHNQ

nên NM=NH

hay ΔNHM cân tại N 

mà \(\widehat{MNH}=60^0\)

nên ΔNHM đều

11 tháng 5 2017

a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)

 

23 tháng 6 2020

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

23 tháng 6 2020

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có

MK chung

góc IMK=góc AMK

=>ΔMIK=ΔMAK

=>góc IKM=góc AKM

=>KM là phân giác của góc AKI

2: KI=KA

KA<KP

=>KI<KP

3: Xét ΔMBP có

PI,BA là đường cao

PI cắt BA tại K

=>K là trực tâm

=>MK vuông góc PB

MI=MA

KI=KA

=>MK là trung trực của AI

=>MK vuông góc AI

=>AI//PB

a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>MN=NE

b: Xét ΔNFP có

PM,FE là đường cao

PM cắt FE tại D

=>D là trực tâm

=>ND vuông góc FP