Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Hình vẽ: vẽ dễ bạn tự vẽ ha
Có Xét tam giác vuông ABC
\(\widehat{B}+\widehat{C}=90^o\)
\(60^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}=30^o\)
\(sin\widehat{B}=\frac{AC}{BC}=\frac{AC}{20}=sin60^o\)
\(\Rightarrow AC=sin60^o\cdot20=10\sqrt{3}\)(cm)
\(sin\widehat{C}=\frac{AB}{BC}=\frac{AB}{20}=sin30^o\)
\(\Rightarrow AB=sin30^o\cdot20=10\)(cm)
2/
a, ΔMNP cân tại M => MN=MP
=> góc MND=MPD
Xét ΔMND và ΔMPD có:
MN=MP
góc MND=MPD
góc NMD=PMD ( đường phân giác MD )
=> ΔMND = ΔMPD (g.c.g)
b. ΔMND = ΔMPD => góc MDN=MDP = 90 độ
Xét tam giác MDN có góc MDN = 90 độ,ta có:
MN2=MD2+ND2MN2=MD2+ND2
=> 132=122+ND2132=122+ND2
=> ND2=25ND2=25
=> ND = 5
c. Xét ΔHMD và ΔKMD có:
MD chung
góc HMD=KMD
góc MHD=MKD = 90 độ
=> ΔHMD = ΔKMD ( cạnh huyền-góc nhọn)
d. Xét tam giác HDN và tam giác KDP có:
góc HND=KPD
góc NHD=PKD = 90 độ
ND=DP ( do ΔMND = ΔMPD)
=> tam giác HDN = tam giác KDP
=> HD=KD (1)
Có: MN=MH+HN
MP=MK+KP
mà MN=MP ( do ΔMND = ΔMPD )
NH=KP
=> MH=MK ( 2)
Từ (1) (2) =>
a) Xét \(\Delta MND\) có:
\(MN^2+MD^2=10^2+24^2=676\) (1)
\(ND^2=26^2=676\) (2)
(1); (2) => \(MN^2+MD^2=ND^2\)
=> \(\Delta MND\) vuông tại M
b) Xét \(\Delta MND\) vuông tại M ta có:
\(MN.MD=MI.ND\)
hay \(10.24=MI.26\)
=> \(MI=\dfrac{10.24}{6}\approx9,23\)
Xét \(\Delta MND\) vuông tại M ta có:
\(\sin\widehat{N}=\dfrac{MD}{ND}=\dfrac{24}{26}\Rightarrow\widehat{N}\approx67^0\)
\(\sin\widehat{D}=\dfrac{MN}{ND}=\dfrac{10}{26}\Rightarrow\sin\widehat{D}\approx23^0\)
Câu 1:
a: Xét (\(\dfrac{NI}{2}\)) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét \(\left(\dfrac{NI}{2}\right)\) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
b: Xét ΔMNI có
NE là đường cao ứng với cạnh MI
ID là đường cao ứng với cạnh MN
NE cắt ID tại H
Do đó: MH\(\perp\)NI
a: Xét (O) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
hay NE⊥MI
Xét (O) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
hay ID⊥MN
b: Xét ΔMNI có
ID là đường cao ứng với cạnh MN
NE là đường cao ứng với cạnh MI
NE cắt ID tại H
Do đó: MH⊥NI
a: Xét (O) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét (O) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
\(a,\)Gọi tâm đường tròn đường kính NI là O
Ta có \(OE=OD=ON=OI\left(=R\right)=\dfrac{1}{2}IN\)
\(\Rightarrow\Delta INE,\Delta IND\) lần lượt vuông tại \(E,D\)
\(\Rightarrow NE\perp MI,ID\perp MN\)
\(b,\) Tam giác MNI có NE, ID là đường cao; H là giao điểm NE và ID nên H là trực tâm
\(\Rightarrow MH\) là đường cao thứ 3
\(\Rightarrow MH\perp NI\)
a) Xét tam giác MND có:
\(MN^2+MD^2=10^2+24^2=676\)
\(DN^2=26^2=676\)
\(\Rightarrow MN^2+MD^2=DN^2\)
=> Tam giác MND vuông tại M(Pytago đảo)
b) Áp dụng HTL:
\(MI.DN=MN.MD\)
\(\Rightarrow MI=\dfrac{MN.MD}{DN}=\dfrac{10.24}{26}=\dfrac{120}{13}\left(cm\right)\)
c) Xét tứ giác MKID có:
\(\widehat{KMD}=\widehat{MKI}=\widehat{MDI}=90^0\)
=> Tứ giác MKID là hình chữ nhật
=> HK=MI