Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác MND có:
\(MN^2+MD^2=10^2+24^2=676\)
\(DN^2=26^2=676\)
\(\Rightarrow MN^2+MD^2=DN^2\)
=> Tam giác MND vuông tại M(Pytago đảo)
b) Áp dụng HTL:
\(MI.DN=MN.MD\)
\(\Rightarrow MI=\dfrac{MN.MD}{DN}=\dfrac{10.24}{26}=\dfrac{120}{13}\left(cm\right)\)
c) Xét tứ giác MKID có:
\(\widehat{KMD}=\widehat{MKI}=\widehat{MDI}=90^0\)
=> Tứ giác MKID là hình chữ nhật
=> HK=MI
a)Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\Leftrightarrow BC=\dfrac{AB^2}{BH}=5\)(cm)
\(HC=BC-HB=5-1,8=3,2\)(cm)
\(HA^2=HB.HC\Leftrightarrow HA=\sqrt{HB.HC}=\sqrt{1,8.3,2}=2,4\)(cm)
\(AC^2=HC.BC\Leftrightarrow AC=\sqrt{HC.BC}=\sqrt{3,2.5}=4\) (cm)
Vậy...
b) Dễ cm được AIMK là hcn (vì tứ giác có 3 góc vuông)
\(\Rightarrow AM=IK\)
Do AM là đường trung tuyến trong tam giác vuông ABC
\(\Rightarrow AM=\dfrac{BC}{2}=2,5\) (cm)
Vậy IK=2,5cm
a)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=3^2-1.8^2=5.76\)
hay AH=2,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow AC^2=2.4^2+3.2^2=16\)
hay AC=4(cm)
a: Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=92+122=225
BC=15cm
* AH.BC=AB.AC
AH.15=9.12
AH.15=108
AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)
b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)
1/ Hình vẽ: vẽ dễ bạn tự vẽ ha
Có Xét tam giác vuông ABC
\(\widehat{B}+\widehat{C}=90^o\)
\(60^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}=30^o\)
\(sin\widehat{B}=\frac{AC}{BC}=\frac{AC}{20}=sin60^o\)
\(\Rightarrow AC=sin60^o\cdot20=10\sqrt{3}\)(cm)
\(sin\widehat{C}=\frac{AB}{BC}=\frac{AB}{20}=sin30^o\)
\(\Rightarrow AB=sin30^o\cdot20=10\)(cm)
2/
a, ΔMNP cân tại M => MN=MP
=> góc MND=MPD
Xét ΔMND và ΔMPD có:
MN=MP
góc MND=MPD
góc NMD=PMD ( đường phân giác MD )
=> ΔMND = ΔMPD (g.c.g)
b. ΔMND = ΔMPD => góc MDN=MDP = 90 độ
Xét tam giác MDN có góc MDN = 90 độ,ta có:
MN2=MD2+ND2MN2=MD2+ND2
=> 132=122+ND2132=122+ND2
=> ND2=25ND2=25
=> ND = 5
c. Xét ΔHMD và ΔKMD có:
MD chung
góc HMD=KMD
góc MHD=MKD = 90 độ
=> ΔHMD = ΔKMD ( cạnh huyền-góc nhọn)
d. Xét tam giác HDN và tam giác KDP có:
góc HND=KPD
góc NHD=PKD = 90 độ
ND=DP ( do ΔMND = ΔMPD)
=> tam giác HDN = tam giác KDP
=> HD=KD (1)
Có: MN=MH+HN
MP=MK+KP
mà MN=MP ( do ΔMND = ΔMPD )
NH=KP
=> MH=MK ( 2)
Từ (1) (2) =>