Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
hay NE⊥MI
Xét (O) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
hay ID⊥MN
b: Xét ΔMNI có
ID là đường cao ứng với cạnh MN
NE là đường cao ứng với cạnh MI
NE cắt ID tại H
Do đó: MH⊥NI
a: Xét (O) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét (O) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
Câu 1:
a: Xét (\(\dfrac{NI}{2}\)) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét \(\left(\dfrac{NI}{2}\right)\) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
b: Xét ΔMNI có
NE là đường cao ứng với cạnh MI
ID là đường cao ứng với cạnh MN
NE cắt ID tại H
Do đó: MH\(\perp\)NI
Đề bài sai nhiều quá, em kiểm tra lại câu a là ON hay MN, và câu b là ON hay MN?
a: Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH\(\perp\)BC
\(a,\)Gọi tâm đường tròn đường kính NI là O
Ta có \(OE=OD=ON=OI\left(=R\right)=\dfrac{1}{2}IN\)
\(\Rightarrow\Delta INE,\Delta IND\) lần lượt vuông tại \(E,D\)
\(\Rightarrow NE\perp MI,ID\perp MN\)
\(b,\) Tam giác MNI có NE, ID là đường cao; H là giao điểm NE và ID nên H là trực tâm
\(\Rightarrow MH\) là đường cao thứ 3
\(\Rightarrow MH\perp NI\)