Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Kẻ OI vuông góc với CD=>IC =ID => OI đi qua trung điểm của PQ ( định lí đường TB hình thang)=>IP =ID
=>IP -IC =IQ -ID => CP =DQ
b) ABC vuong tại C , ABD vuông tại D( t/c trung tuyến ...)
=> PAD đồng dạng QDB ( P=Q =90; D =B vì la cặp góc có cạnh tuong ứng vuông góc)
=> PD/QB = PA/QD => PD.DQ = PA.BD
-Do CP = DQ => CQ.CP = (CD+DQ).CP =(CD+CP).DQ =DP.DQ
c) AMB có 2 đường cao AD, BC cắt nhau tại H => H là trực tâm
=> MH là đường cao thứ 3 => MH vuông.. AB
Ủa H nó là trực tâm tam giác MAB thì câu này khác gì câu hồi chiều ta?
a: kẻ OH\(\perp\)CD tại H
Ta có: OH\(\perp\)CD
AP\(\perp\)CD
QB\(\perp\)CD
Do đó: OH//AP//QB
Xét hình thang ABQP(AP//QB) có
O là trung điểm của AB
OH//AP//BQ
Do đó: H là trung điểm của PQ
=>HP=HQ
Ta có: ΔOCD cân tại O
mà OH là đường cao
nên H là trung điểm của CD
=>HC=HD
Ta có: HC+CP=HP
HD+DQ=HQ
mà HP=HQ và HC=HD
nên CP=DQ
b: Ta có: ΔOCD vuông tại O
=>\(OC^2+OD^2=CD^2\)
=>\(CD^2=R^2+R^2=2R^2\)
=>\(CD=R\sqrt{2}\)
Xét ΔOAC có OA=OC=AC=R
nên ΔOAC đều
=>\(\widehat{CAO}=60^0\)
=>\(\widehat{CAB}=60^0\)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔCAB vuông tại C có \(sinCAB=\dfrac{CB}{AB}\)
=>\(\dfrac{CB}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(CB=R\sqrt{3}\)
500x3/5
a. Gọi N là trung điểm của dây cung CD
Có ON⊥CD; AP⊥CD;BQ⊥CD⇒ON//AP//BQ
⇒ON⇒ON là đường trung bình của hình thang APQB
⇒PN=NQ
Mà CN=ND
⇒PC=PN−CN=NQ−ND=DQ
b)
+) Xét hai tam giác vuông ΔAPD và ΔDQB ta có:
ADPˆ=DBQ (vì cùng phụ với BDQ^)
⇒ΔAPD∼ΔDQB (g.g)
⇒PDBQ=APDQ⇒PD.DQ=AP.BQ
+) Có CP=QD
⇒CP+CD=QD+CD
⇒PD=QC
⇒QC.CP=PD.Q
c)Trong ΔAMBta có AD và BC là hai đường cao
⇒ H là trực tâm của ΔAMB
⇒MH⊥AB