K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

500x3/5

16 tháng 3 2020

a. Gọi N là trung điểm của dây cung CD
Có ON⊥CD; AP⊥CD;BQ⊥CD⇒ON//AP//BQ
⇒ON⇒ON là đường trung bình của hình thang APQB
⇒PN=NQ
Mà CN=ND

⇒PC=PN−CN=NQ−ND=DQ

b)
+) Xét hai tam giác vuông ΔAPD và ΔDQB ta có:
ADPˆ=DBQ (vì cùng phụ với BDQ^)
⇒ΔAPD∼ΔDQB (g.g)
⇒PDBQ=APDQ⇒PD.DQ=AP.BQ

+) Có CP=QD
⇒CP+CD=QD+CD
⇒PD=QC
⇒QC.CP=PD.Q

c)Trong ΔAMBta có AD và BC là hai đường cao
⇒ H là trực tâm của ΔAMB
⇒MH⊥AB

1 tháng 12 2015

- Kẻ OI vuông góc với CD=>IC =ID  => OI  đi qua trung điểm của PQ ( định lí đường TB hình thang)=>IP =ID

=>IP -IC =IQ -ID => CP =DQ

b) ABC vuong tại C , ABD vuông tại D( t/c trung tuyến ...)

=> PAD đồng dạng QDB ( P=Q =90; D =B vì la cặp  góc có cạnh tuong ứng vuông góc)

=> PD/QB = PA/QD => PD.DQ = PA.BD

-Do CP = DQ => CQ.CP = (CD+DQ).CP =(CD+CP).DQ =DP.DQ

c) AMB có 2 đường cao AD, BC cắt nhau tại H => H là trực tâm

=> MH là đường cao thứ 3 => MH vuông.. AB

11 tháng 11 2019
https://i.imgur.com/qLzMGGB.jpg
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

26 tháng 12 2020

Bổ sung đề: H là giao điểm của AD và BC.

NV
26 tháng 12 2020

Ủa H nó là trực tâm tam giác MAB thì câu này khác gì câu hồi chiều ta?

29 tháng 1 2016

em chưa học lớp 9 ạ

10 tháng 12 2023

a: kẻ OH\(\perp\)CD tại H

Ta có: OH\(\perp\)CD

AP\(\perp\)CD

QB\(\perp\)CD

Do đó: OH//AP//QB

Xét hình thang ABQP(AP//QB) có

O là trung điểm của AB

OH//AP//BQ

Do đó: H là trung điểm của PQ

=>HP=HQ

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

=>HC=HD

Ta có: HC+CP=HP

HD+DQ=HQ

mà HP=HQ và HC=HD

nên CP=DQ

b: Ta có: ΔOCD vuông tại O

=>\(OC^2+OD^2=CD^2\)

=>\(CD^2=R^2+R^2=2R^2\)

=>\(CD=R\sqrt{2}\)

Xét ΔOAC có OA=OC=AC=R

nên ΔOAC đều

=>\(\widehat{CAO}=60^0\)

=>\(\widehat{CAB}=60^0\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C có \(sinCAB=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(CB=R\sqrt{3}\)