K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

các bạn làm bài 1 thôi nhé, bài 2 mk lm đc r

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔDHE vuông tại H có HA là đường cao ứng với cạnh huyền DE, ta được:

\(DA\cdot DE=DH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDFH vuông tại H có HB là đường cao ứng với cạnh huyền DF, ta được:

\(DB\cdot DF=DH^2\)(2)

Từ (1) và (2) suy ra \(DA\cdot DE=DB\cdot DF\)

hay \(\dfrac{DE}{DB}=\dfrac{DF}{DA}\)

Xét ΔDEF vuông tại D và ΔDBA vuông tại D có 

\(\dfrac{DE}{DB}=\dfrac{DF}{DA}\)(cmt)

Do đó: ΔDEF\(\sim\)ΔDBA(c-g-c)

11 tháng 12 2018

a, Tứ giác BDQH nội tiếp vì  B D H ^ + B Q H ^ = 180 0

b, Vì tứ giác ACHQ nội tiếp =>  C A H ^ = C Q H ^

Vì tứ giác ACDF nội tiếp  =>  C A D ^ = C F D ^

Từ đó có  C Q H ^ = C F D ^  mà 2 góc ở vị trí đồng vị => DF//HQ

c, Ta có  H Q D ^ = H B D ^  (câu a)

H B D ^ = C A D ^ = 1 2 s đ C D ⏜

C A D ^ = C Q H ^  (ACHQ cũng nội tiếp)

=>  H Q D ^ = H Q C ^ => QH là phân giác  C Q D ^

Mặt khác chứng minh được CH là phân giác góc  Q C D ^

Trong tam giác QCD có H là giao của ba đường phân giác nên H là tâm đường tròn nội tiếp => H cách đều 3 cạnh CD, CQ, DQ

d, Vì CMFN là hình chữ nhật nên MN và CF cắt nhau tại trung điểm của mỗi đường.

Trong tam giác FCD có MN//CD và MN đi qua trung điểm CF nên MN đi qua trung điểm DF

Mặt khác AB đi qua trung điểm của DF nên 3 đường thẳng MN, AB, DF đồng quy

20 tháng 2 2022

bạn giải thích lại giúp mình câu b được không ạ? tại mình không hiểu câu đó lắm, mình cảm ơn!