Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
Ta có: $\widehat{EOB}=\widehat{xOB}=90^0$
$\widehat{ECB}=\widehat{ACB}=90^0$ (góc nt chắn nửa đường tròn)
Tứ giác $OECB$ có tổng 2 góc đối $\widehat{ECB}+\widehat{EOB}=90^0+90^0=180^0$ nên $OECB$ là tứ giác nội tiếp.
2) Vì $OECB$ là tứ giác nội tiếp nên $\widehat{OBC}=\widehat{AEO}$ hay $\widehat{DBO}=\widehat{AEO}$
Xét tam giác $DBO$ và $AEO$ có:
$\widehat{DBO}=\widehat{AEO}$ (cmt)
$\widehat{DOB}=\widehat{AOE}=90^0$
$\Rightarrow \triangle DBO\sim \triangle AEO$ (g.g)
$\Rightarrow \frac{DO}{BO}=\frac{AO}{EO}\Rightarrow OA.OB=OE.OD$
3.
Ta có: $\widehat{ICE}=\widehat{ICA}=\widehat{CBA}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
$\widehat{CBA}=\widehat{CEI}$ (do $OECB$ là tgnt)
$\Rightarrow \widehat{ICE}=\widehat{CEI}\Rightarrow IE=IC(*)$
Mặt khác:
$\widehat{AOD}=\widehat{ACD}=90^0$ và cùng nhìn cạnh $AD$ nên $AOCD$ là tứ giác nội tiếp. Suy ra $\widehat{CAB}=\widehat{CDI}$.
$\widehat{ICD}=90^0-\widehat{ICE}=90^0-\widehat{CBA}=\widehat{CAB}=\widehat{CDI}$
$\Rightarrow IC=ID(**)$
Từ $(*); (**)\Rightarrow ID=IE$ hay $I$ là trung điểm $DE$
a: góc BEI+góc BDI=180 độ
=>BEID nội tiếp
góc CEI+góc CFI=180 độ
=>CEIF nội tiếp
b: BEID nội tiếp
=>góc IDE=góc IBE=1/2*sđ cung CI
CEIF nội tiếp
=>góc IEF=góc ICF=1/2*sđ cung CI
=>góc IDE=góc IEF
BEID nội tiếp
=>góc IED=góc IBD=1/2*sđ cung IB
CEIF nội tiếp
=>góc IFE=góc ICE=1/2*sđ cung IB=góc IED
Xét ΔIDE và ΔIEF có
góc IDE=góc IEF
góc IED=góc IFE
=>ΔIDE đồng dạng với ΔIEF
a) Xét tứ giác KEDC có
\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)