K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2021

Đáp án:

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

image

 
28 tháng 4

Hình đâu 

d: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>góc BKC=góc BCK

3 tháng 2 2019

tu  ve hinh :

cau b la vuong goc phai k

a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)

goc ADB = goc ADC do AD | BC (GT)

=> tamgiac ADB = tamgiac ADC (ch - gn)

=> BD = DC (dn)

b, xet tamgiac BHD va tamgiac CKD co :  BD = DC (Cau a)

goc ABC = goc ACB (cau a)

goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)

=> tamgiac BHD = tamgiac CKD (ch - gn)

=> HD = DK (dn)

c, xet tamgiac AHD va tamgiac AKD co : AD chung

HD = DK (cau b) 

goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt) 

=> tamgiac AHD = tamgiac AKD  (ch - cgv)

=> tamgiac AHK can tai A (dn)

=> goc AHK = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2

=> goc AHK = goc ABC  2 goc nay dong vi

=> HK // BC (tc)

d, tu ap dung py-ta-go 

4 tháng 2 2019

bài 2 nữa ạ

`@` `\text {dnammv}`

`a,`

Xét \(\Delta BED\) và \(\Delta CFD\) có:

\(\left\{{}\begin{matrix}\text{BD = CD (D là trung điểm của BC}\\\widehat{\text{B}}=\widehat{\text{C}}\left(\text{ }\Delta\text{ABC cân tại A}\right)\\\widehat{BED}=\widehat{CFD}\left(=90^0\right)\end{matrix}\right.\)

`=> \Delta BED = \Delta CFD (ch-gn)`

`-> \text {BE = CF (2 cạnh tương ứng)}`

`b,`

Vì `\Delta BED = \Delta CFD (a)`

`-> \text {DE = DF (2 cạnh tương ứng)}`

`\text {Xét}` `\Delta DEF:`

`\text {DE = DF}`

`-> \Delta DEF` là `\Delta` cân

`c,`

Vì \(\left\{{}\begin{matrix}\text{AB = AC (tam giác ABC cân tại A)}\\\text{BE = CF (a)}\end{matrix}\right.\)

`-> \text {AE = AF}`

\(\text{Xét }\Delta\text{ AEF}: \)

`\text {AE = AF}`

`-> \Delta AEF` là `\Delta` cân (tại A).

`->`\(\widehat {AEF}= \widehat {AFE}\)\(=\dfrac{180-\widehat{A}}{2}\text{ }\left(1\right)\)

`\Delta ABC` cân tại `A`

`->`\(\widehat {ABC}= \widehat {ACB}=\)\(\dfrac{180-\widehat{A}}{2}\text{ }\left(2\right)\)

Từ `(1)` và `(2)`

`->`\(\widehat {AEF}= \widehat {ABC}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {EF // BC (tính chất 2 đường thẳng //).}`

loading...

 

10 tháng 1 2020

c) tam c/m được t/g ABC cân tại A
trong t/g cân thì đường phân giác xuất phát từ đỉnh trùng với đường trung tuyến nên DB=DC

t/g FDB=t/g EDC (cạnh huyền-góc nhọn)

=> DF=DE

d) có BF=EC (t/g FDB=t/g EDC)

và AB=AC (t/g ABC cân)

nên AB-BF=AC-EC

=> AF=AE

=> t/g AFE cân tại A
trong t/g cân thì đường phân giác xuất phát từ đỉnh trùng với đường cao nên AD vuông góc với EF

trong t/g cân thì đường phân giác xuất phát từ đỉnh trùng với đường cao nên AD vuông góc với BC (t/g ABC cân tại A)

ta có AD vuông góc với EF và BC nên EF//BC