Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý C là ghi sai đề bài rồi nhé
Còn ý d khó nhất thì giải như sau
1: Xét ΔDIN và ΔMFN có
ND=NM
\(\widehat{DNM}=\widehat{MNF}\)
NI=NF
Do đó: ΔDIN=ΔMFN
Suy ra: DI=FM
mà DI<DF
nên FM<DF
2: EF=12cm nên IF=6cm
\(\Leftrightarrow DI=FM=\sqrt{8^2-6^2}=2\sqrt{7}\left(cm\right)\)
\(a,\left\{{}\begin{matrix}DE=DF\\\widehat{EDI}=\widehat{FDI}\\DI\text{ chung}\end{matrix}\right.\Rightarrow\Delta DEI=\Delta DFI\left(c.g.c\right)\\ \Rightarrow\widehat{DIE}=\widehat{DIF};EI=FI\\ \text{Mà }\widehat{DIE}+\widehat{DIF}=180^0\\ \Rightarrow\widehat{DIE}=\widehat{DIF}=90^0\\ \Rightarrow DI\perp EF\text{ và }I\text{ là trung điểm }EF\\ b,\left\{{}\begin{matrix}DE=DF\\\widehat{EDM}=\widehat{FDM}\\DM\text{ chung}\end{matrix}\right.\Rightarrow\Delta DEM=\Delta DFM\left(c.g.c\right)\\ \Rightarrow ME=MF;\widehat{DEM}=\widehat{DFM}=90^0\\ \Rightarrow\Delta AFM\text{ vuông tại }F\)
a) Xét ΔDIN và ΔMNF có
DN=MN(N là trung điểm của DM)
\(\widehat{DNI}=\widehat{MNF}\)(hai góc đối đỉnh)
IN=NF(N là trung điểm của IF)
Do đó: ΔDIN=ΔMNF(c-g-c)
⇒\(\widehat{IDN}=\widehat{NMF}\)(hai góc tương ứng)
mà \(\widehat{IDN}\) và \(\widehat{NMF}\) là hai góc ở vị trí so le trong
nên DI//MF(dấu hiệu nhận biết hai đường thẳng song song)
Xét ΔEDI và ΔFDI có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDI}=\widehat{FDI}\)(DI là tia phân giác của \(\widehat{EDF}\))
DI chung
Do đó: ΔEDI=ΔFDI(c-g-c)
⇒\(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)
nên \(\widehat{DIE}=\widehat{DIF}=\frac{180^0}{2}=90^0\)
⇒DI⊥EF
Ta có: DI⊥EF(cmt)
DI//FM(cmt)
Do đó: FM⊥EF(định lí 2 từ vuông góc tới song song)
b) Xét ΔIFM vuông tại F có IM là cạnh huyền
nên IM là cạnh lớn nhất trong ΔIFM(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
⇒IM>FM(1)
Xét ΔINM và ΔFND có
IN=FN(N là trung điểm của IF)
\(\widehat{INM}=\widehat{FND}\)(hai góc đối đỉnh)
NM=ND(N là trung điểm của MD)
Do đó: ΔINM=ΔFND(c-g-c)
⇒IM=FD(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra DF>MF(đpcm)
c) Xét ΔDFM có DF>MF(cmt)
mà góc đối diện với cạnh DF là \(\widehat{DMF}\)
và góc đối diện với cạnh MF là \(\widehat{FDM}\)
nên \(\widehat{DMF}>\widehat{FDM}\)(định lí 1 về quan hệ giữa cạnh và góc đối diện trong tam giác)
mà \(\widehat{DMF}=\widehat{IDN}\)(cmt)
nên \(\widehat{IDN}>\widehat{MDF}\)
hay \(\widehat{IDN}>\widehat{NDF}\)(đpcm)
d) Ta có: ΔEFM vuông tại F(EF⊥FM)
mà FK là đường trung tuyến ứng với cạnh huyền EM(K là trung điểm của EM)
nên \(FK=\frac{EM}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(EK=\frac{EM}{2}\)(K là trung điểm của EM)
nên FK=EK
⇔K nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DE=DF(ΔDEF cân tại D)
nên D nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: IE=IF(ΔEDI=ΔFDI)
nên I nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra D,I,K thẳng hàng(đpcm)
Hình vẽ tớ có lẽ vẽ hơi chi tiết về phần bằng nhau hay vuông góc nhỉ ???? Nếu không nhìn thấy rõ thì bảo tớ vẽ lại nhé ;)
a)
Theo đề ra, ta có: ED= 6 (cm) => \(ED^2=6^2=36\)
DF=8(cm) => \(DF^2=8^2=64\)
EF=10(cm) => \(EF^2=10^2=100\)
Ta thấy: 100= 36+64 => \(EF^2=DE^2+DF^2\)
=> Tam giác EDF vuông tại D (theo định lý Py-ta-go đảo)
b)
*) Xét \(\Delta EDM\) và \(\Delta ENM\), có:
ED=EN(gt)
\(\widehat{E_1}=\widehat{E_2}\)
Chung EM.
=> \(\Delta EDM=\Delta ENM\left(c.g.c\right)\) ( còn có cách g.c.g nữa )
=> \(\widehat{EDM}=\widehat{ENM}\) và DM=MN mà \(\widehat{EDM}=90^o\)
=> \(\widehat{ENM}=90^o\) => MN vuông góc với EF.
*) Trong tam giác NMF vuông tại N => Góc N là góc lớn nhất trong tam giác đó => MF là cạnh lớn nhất => MF>MN.
Mà MN=DM => MF>DM.
c) Lấy điểm giao nhau của EM và DN là P'
Xét tam giác EDP' và tam giác ENP', ta có:
ED=EN
\(\widehat{E_1}=\widehat{E_2}\)
Chung EP'
=> \(\Delta EDP'=\Delta ENP'\left(c.g.c\right)\)
=> DP'=P'N => P' là trung điểm của đoạn thẳng DN mà P cũng là trung điểm của đoạn thẳng DN nên P và P' trùng nhau.
Đồng thời P và M cùng nằm trên tia phân giác của góc E.(1)
*) Nối điểm E-> Q ( phải nối vì ta chưa chứng minh được Q thuộc tia phân giác góc E ý mà)
Xét tam giác DMI và tam giác NMF.
\(\widehat{D}=\widehat{N}\left(=90^o\right)\)
DM=MN
\(\widehat{M_1}=\widehat{M_2}\) (góc đối đỉnh)
=> \(\Delta DMI=\Delta NMF\left(g.c.g\right)\)
=> DI=NF và ED=EN => DI+DE=FN+FE =>IE=FE
Xét tam giác EQI và tam giác EQF.
IE=FE
Chung EQ
IQ=QF( do Q là trung điểm của IF)
=> \(\Delta EIQ=\Delta EFQ\left(c.c.c\right)\) => \(\widehat{E_1}=\widehat{E_2}\) => Q thuộc tia phân giác của góc E (2)
Từ (1) và (2) => P,M,Q thẳng hàng......
p/s: Nếu cậu thích thì có thể không làm theo dạng xét tam giác mà áp dụng tính chất tia phân giác của góc hay đại loại là thế mà làm .....
Sr về cái hình nha ..... cái hình đánh dấu cái không đáng :p
Đức Thuận Trần : Bài không hề cho \(\widehat{DIN}=90^o\) hay ΔDIF vuông :))
Nhưng DI là đường cao mà bạn Misaki