K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

các bạn giúp mik với

 

1: Xét ΔDIN và ΔMFN có

ND=NM

\(\widehat{DNM}=\widehat{MNF}\)

NI=NF

Do đó: ΔDIN=ΔMFN

Suy ra: DI=FM

mà DI<DF

nên FM<DF

2: EF=12cm nên IF=6cm

\(\Leftrightarrow DI=FM=\sqrt{8^2-6^2}=2\sqrt{7}\left(cm\right)\)

24 tháng 4 2022

 Ý  C là ghi sai đề bài rồi nhé
Còn ý d khó nhất thì giải như sau
undefined

3 tháng 5 2016

D E F

a/ Vì EF2=DE2+DF2 (Pytago)

=> Tam giác DEF vuông tại D

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

9 tháng 3 2020

D K H E I F O

tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE

Xét tam giác KEF và tam giác HFE

có EF chung

góc EKF=góc EHF = 900

góc KEF=góc  HFE  (CMT)

suy ra  tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)

suy ra EK = HF

mà DK+KE=DE, DH+HF=DF

lại có DE=DF (CMT)

suy ra KD=DH

b) xét tam giác DKO và tam giác DHO

có DO chung

góc DKO = góc DHO = 900

DK = DH (CMT)

suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)

suy ra góc KDO = góc HDO

suy ra DO là tia phân giác của góc EDF  (1)

c) Vì DK = DH suy ra tam giác DKH cân tại D

suy ra góc DKH= góc DHK

suy ra góc DKH+ góc DHK + góc KDH = 1800

suy ra góc DKH=(1800 - góc KDH) :2  (2) 

Tam giác DEF cân tại D

suy ra góc DEF + góc DFE + góc EDF = 1800

suy ra góc DEF = (1800 - góc KDH) :2 (3)

Từ (2) và (3) suy ra góc DKH = góc DEF

mà góc DKH đồng vị với góc DEF 

suy ra KH // EF

d) Xét tam giác DEI và tam giác DFI

có DE = DF  (CMT)

DI chung

EI = IF 

suy ra tam giác DEI = tam giác DFI (c.c.c)

suy ra góc EDI = góc FDI

suy ra DI là tia phân giác của góc EDF  (4)

Từ (1) và (4) suy ra DO trùng DI

hay ba điểm D, O, I thẳng hàng.

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

hay EH=FH

b: EH=FH=EF/2=3(cm)

Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)

nên DH=4(cm)

c: Xét ΔDEM và ΔDFN có

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEH và ΔMFH có 

NE=MF

\(\widehat{E}=\widehat{F}\)

EH=FH

Do đó: ΔNEH=ΔMFH

Suy ra: HN=HM

hay H nằm trên đường trung trực của MN(1)

Ta có: KM=KN

nên K nằm trên đường trung trực của MN(2)

Ta có: DN=DM

nên D nằm trên đường trung trực của MN(3)

Từ (1), (2) và (3) suy ra D,H,K thẳng hàng

14 tháng 2 2022

a. xét tam giác DHE và tam giác DHF, có:

D: góc chung

DE = DF ( DEF cân )

DH: cạnh chung

Vậy tam giác DHE = tam giác DHF ( c.g.c )

=> HE = HF ( 2 cạnh tương ứng )

b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm

áp dụng định lý pitago vào tam giác vuông DHE, có:

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c.xét tam giác DEM và tam giác DFN có:

DE = DF ( DEF cân )

DM = DN ( gt )

D: góc chung

Vậy tam giác DEM = tam giác DFN ( c.g.c )

=> góc DEM = góc DFN ( 2 góc tương ứng )

d.xét tam giác DKM và tam giác DKN, có:

DM = DN ( gt )

D: góc chung

DK: cạnh chung

Vậy tam giác DKM = tam giác DKN ( c.g.c )

=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )

=> DK vuông BC

Mà DH cũng vuông BC

=> D,H,K thẳng hàng

Chúc bạn học tốt!!!

a) Xét ΔDIN và ΔMNF có

DN=MN(N là trung điểm của DM)

\(\widehat{DNI}=\widehat{MNF}\)(hai góc đối đỉnh)

IN=NF(N là trung điểm của IF)

Do đó: ΔDIN=ΔMNF(c-g-c)

\(\widehat{IDN}=\widehat{NMF}\)(hai góc tương ứng)

\(\widehat{IDN}\)\(\widehat{NMF}\) là hai góc ở vị trí so le trong

nên DI//MF(dấu hiệu nhận biết hai đường thẳng song song)

Xét ΔEDI và ΔFDI có

DE=DF(ΔDEF cân tại D)

\(\widehat{EDI}=\widehat{FDI}\)(DI là tia phân giác của \(\widehat{EDF}\))

DI chung

Do đó: ΔEDI=ΔFDI(c-g-c)

\(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)

\(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)

nên \(\widehat{DIE}=\widehat{DIF}=\frac{180^0}{2}=90^0\)

⇒DI⊥EF

Ta có: DI⊥EF(cmt)

DI//FM(cmt)

Do đó: FM⊥EF(định lí 2 từ vuông góc tới song song)

b) Xét ΔIFM vuông tại F có IM là cạnh huyền

nên IM là cạnh lớn nhất trong ΔIFM(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

⇒IM>FM(1)

Xét ΔINM và ΔFND có

IN=FN(N là trung điểm của IF)

\(\widehat{INM}=\widehat{FND}\)(hai góc đối đỉnh)

NM=ND(N là trung điểm của MD)

Do đó: ΔINM=ΔFND(c-g-c)

⇒IM=FD(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra DF>MF(đpcm)

c) Xét ΔDFM có DF>MF(cmt)

mà góc đối diện với cạnh DF là \(\widehat{DMF}\)

và góc đối diện với cạnh MF là \(\widehat{FDM}\)

nên \(\widehat{DMF}>\widehat{FDM}\)(định lí 1 về quan hệ giữa cạnh và góc đối diện trong tam giác)

\(\widehat{DMF}=\widehat{IDN}\)(cmt)

nên \(\widehat{IDN}>\widehat{MDF}\)

hay \(\widehat{IDN}>\widehat{NDF}\)(đpcm)

d) Ta có: ΔEFM vuông tại F(EF⊥FM)

mà FK là đường trung tuyến ứng với cạnh huyền EM(K là trung điểm của EM)

nên \(FK=\frac{EM}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(EK=\frac{EM}{2}\)(K là trung điểm của EM)

nên FK=EK

⇔K nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DE=DF(ΔDEF cân tại D)

nên D nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: IE=IF(ΔEDI=ΔFDI)

nên I nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra D,I,K thẳng hàng(đpcm)