K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

Cho mình hỏi là bạn có viết thiếu đề ko vậy

Dù mình chưa học đến lớp 8 nhưng từ thuở đi học cho tới giờ chưa thấy cái đề nào như này!

20 tháng 11 2014

gọi I là trung điểm AD

xét tam giác ACD có EI là đường trung bình nên IE song song CD và bằng 1/2 CD

xét trường hợp 1 EF cắt OA tại K ko thuộc tia Ox và cắt Oy tại Q thuộc Oy

có EI song song CD nên IEF=FQD

tương tự ta có IN là đường trung bình tam giác ABD nên IF song song AB và bằng 1/2 AB 

AB=CD nên IE=IF 

tam giác IEF cân tại I

ta có IF song song AB nên IF song song OK

INK= KNI

IMN = NQD = OQK 

nên tam giác OKQ cân tại O có Ot là phân giác góc ngoài tại O nên Ot song song KQ hay song song MN

trường hợp còn lại làm tương tị

chỗ Ot là phân giác ngoài ban tự chứng minh song song đi dễ mà 

7 tháng 4 2018

Tam giác AOB ~ tam giác COD 
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]

=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)

Tương tự ta cũng có tam giác IAB ~ tam giác IDC 
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2) 
Từ (1)và (2) => đpcm

Câub: 
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON 
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm

9 tháng 2 2019

Hỏi đáp Toán

a) Ta có: ^BAR+^DAR=^BAD=900 (1)

^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)

Từ (1) và (2) => ^BAR=^DAQ

Xét \(\Delta\)ABR và \(\Delta\)ADQ:

^ABR=^ADQ=900

AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)

^BAR=^DAQ

=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:

AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.

Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)

=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.

b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)

Tương tự: AN vuông góc với PS (4)

Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450

AN là phân giác của ^PAS => ^SAN=450

=> ^MAR+^SAN=^MAN=900 (5)

Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)

c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS

Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H

=> P là trực tâm của tam giác SQR (đpcm).

d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.

Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN

=> CN=AN => N nằm trên đường trung trực của AC (6)

Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM

Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM

=> CM=AM => M nằm trên đường trung trực của AC (7)

Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)

e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường

=> BD là trung trực của AC (9)

Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).

10 tháng 2 2019

thank youkhocroi