Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC và ΔADE có:
AB = AD (gt)
AC = AE (gt)
∠BAC = ∠DAE (hai góc đối đỉnh)
⇒ ΔABC = ΔADE (c.g.c)
⇒ ∠C = ∠E ⇒ DE // BC.
Hình tự vẽ.
a) Xét tam giác ADE và tam giác ABC có:
AD=AB(gt)
DAE=BAC(đối đỉnh)
AE=AC(gt)
=>Tam giác ADE=tam giác ABC(c.g.c)
=>DEA=ACB(2 góc tương ứng)
Mà hai góc ở vị trí so le trong
=>ED//BC
b) Xét tam giác DAN và tam giác BAM có:
NDA=ABM(tam giác ADE=tam giác ABC)
AD=AB(gt)
DAN=BAM(đối đỉnh)
=>Tam giác DAN=tam giác BAM(g.c.g)
=>AN=AM
=>A là trung điểm MN
ΔAEM và ΔACN có:
∠C = ∠E ( hai góc so le trong, DE// BC)
AE = AC ( giả thiết)
∠EAM = ∠CAN (hai góc đối đỉnh)
⇒ ΔAEM = ΔACN (g.c.g) ⇒ AM = AN ( hai cạnh tương ứng).
a )
ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh )
mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A )
Do do : \(\widehat{C_2}=\widehat{B}\)
xét \(\Delta ABDva\Delta ICE,co:\)
AB = AC = IC ( gt )
BD=CE ( gt )
\(\widehat{C_2}=\widehat{B}\) (cmt )
Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)
Xét Δ DAE và Δ BAC có:
AD = AB (gt)
DAE = BAC (đối đỉnh)
AE = AC (gt)
Do đó, Δ DAE = Δ BAC (c.g.c)
=> DEA = BCA (2 góc tương ứng)
Mà DEA và BCA là 2 góc so le trong nên DE // BC (đpcm)
Vì DE // BC nên MDA = ABN (so le trong)
Xét Δ DAM và Δ BAN có:
MDA = ABN (cmt)
AD = AB (gt)
DAM = BAN (đối đỉnh)
Do đó, Δ DAM = Δ BAN (g.c.g)
=> AM = AN (2 cạnh tương ứng) (đpcm)
a)\(\Delta AED,\Delta ACB\)có AE = AC (gt) ;\(\widehat{EAD}=\widehat{CAB}\)(đối đỉnh) ; AD = AB (gt)
\(\Rightarrow\Delta AED=\Delta ACB\left(c.g.c\right)\Rightarrow\widehat{D}=\widehat{B}\)(2 góc tương ứng ở vị trí so le trong) => ED // BC
b) \(\Delta MAD,\Delta NAB\)có\(\widehat{MAD}=\widehat{NAB}\)(đối đỉnh) ; AD = AB (gt) ;\(\widehat{D}=\widehat{B}\) (cmt)
\(\Rightarrow\Delta MAD=\Delta NAB\left(g.c.g\right)\Rightarrow AM=AN\)(2 cạnh tương ứng)
Bạn ơi câu a hình như bạn ghi sai đề rồi, phải là chứng Minh DC bằng EB chứ. Bạn xem lại hộ mình nhé nếu có gì mình xin lỗi ha
Nếu là đề sai theo mình là như vậy nè:
xét 2 Tam giác ABE và ACD có:
AE = AC (gt)
AB = AD(gt)
Â1 = Â2 (đối đỉnh)
suy ra Tam giác ABE = Tam giác ADC
Câu b
Vì 2 Tam giác ở câu a ta mới chứng Minh là bằng nhau nên ta có:
bạn tự vẽ hình và kí hiệu hình nhăn
ta có: góc D1 = góc B1 (2 góc tương ứng)
mà 2 góc này ở vị tí so le trong
suy ra BC // DE
1: Xét ΔADE và ΔABC có
AD=AB
\(\widehat{DAE}=\widehat{BAC}\)
AE=AC
Do đó: ΔADE=ΔABC