Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
góc BAN chung
Do đó:ΔABN=ΔACM
b: Ta có: ΔABC đều
mà BN;CM là các đường cao
nên BN;CM là các đường phân giác và cũng là các đường trung tuyến
AB=AC=BC=24/2=8(cm)
=>BM=CN=4cm
Xét ΔMNB có \(\widehat{MBN}=\widehat{MNB}\)
nên ΔMNB cân tạiM
=>MN=MB=4cm
\(C_{BMNC}=4+4+4+8=20\left(cm\right)\)
Gọi độ dài cạnh huyền là h và 2 cạnh góc vuông là a; b
Diện tích tam giác vuông: 1/2*a*b = 96 => ab = 192 (*)
Chu vi HCN: a + b + h = 48 => h = 48 - a - b => h2 = (48 - a - b)2 = 482 + a2 + b2 - 2*48a - 2*48b + 2ab (1)
Vì tam giác vuông nên: h2 = a2 + b2 (Pitago) ; thay ab = 192 vào (1):
(1) <=> 96*(a + b) = 482 + 2*192 <=> a + b = 28 => a = 28 - b
Thay vào (*): (28 - b)*b = 192 => b2 - 28b + 192 = 0 => (b - 12)(b - 16) = 0
- Nếu b = 12 thì a = 16 và h = \(\sqrt{4\cdot3^2+4\cdot4^2}\)= 20
- Nếu b = 16 thì a = 12 và h = \(\sqrt{4\cdot3^2+4\cdot4^2}\)= 20
Vậy độ dài của các cạnh góc vuông là 12 (m); 16 (m) ; cạnh huyền là: 20 (m)
a, Xét 2 tam giác ADE và ACB
Góc A chung
AD/AC=AE/AB =1/2
=> Tam giác ADE đồng dạng tam giác ACB
b, tA CÓ : SADE / SACB = (AD/AC)2 = 1/4
=> SADE = 1/4 * SACB = 1/4 *S
a, tỉ số chu vi của hai tam giác cũng là tỉ số đồng dạng k=2/3
b, ta có chuvi ABC/chuvi MNP=2/3 (1)
mà : chuvi MNP-chuvi ABC=15 SUY RA chuvi MNP=chuvi ABC+15, THAY VÀO (1) TA ĐC
chuvi ABC/chuvi ABC+15 =2/3. QUY ĐỒNG GIẢI RA ĐC chuvi ABC=30, chuvi MNP=45
C, tỉ số dtABC/dt MNP=(2/3)^2=4/9, MÀ dtMNP=81
SUY RA dt ABC=4/9 nhân 81=30 cm^2
không biết giải mới lớp 6 à