K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

\(\overrightarrow{BC}=\left(-6;-3\right)\)

Trọng tâm của ΔABC là G(2; 1)

Khi tịnh tiến ΔABC thành ΔA'B'C' theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thì G(2;1) cũng sẽ được tịnh tiến theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thành G' (x;y)

⇒ \(\overrightarrow{GG'}=\overrightarrow{BC}\) = (-6 ; -3)

⇒ \(\left\{{}\begin{matrix}x-2=-6\\y-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\). Vậy G' (-4 ; -2)

NV
23 tháng 12 2020

Hướng dẫn: 

Dễ dàng nhận ra A thuộc B'G (vì AB' là đường chéo của hbh mặt bên nên là 1 trung tuyến)

Gọi M, M' lần lượt là trung điểm BC và B'C'

=> (GOB') là (AMB')

(CA'O') là (CA'M')

Có B'M'CM là hình bình hành

A'M'MA cũng là hbh 

Suy ra 2 cặp đường thẳng song song và cắt nhau => đpcm

2 tháng 6 2017

Giải bài 1 trang 23 sgk Hình học 11 | Để học tốt Toán 11

+ Chứng minh hoàn toàn tương tự ta được

Giải bài 1 trang 23 sgk Hình học 11 | Để học tốt Toán 11

b. ΔA1B1C1 là ảnh của ΔABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc –90º và phép đối xứng qua trục Ox.

⇒ ΔA1B1C1 là ảnh của ΔA’B’C’ qua phép đối xứng trục Ox.

⇒ A1 = ĐOx(A’) ⇒ A1(2; -3)

B1 = ĐOx(B’) ⇒ B1(5; -4)

 

C1 = ĐOx(C’) ⇒ C1(3; -1).

a) + Ta có:

Giải bài 1 trang 23 sgk Hình học 11 | Để học tốt Toán 11

NV
5 tháng 4 2022

a.

\(\left\{{}\begin{matrix}BB'\perp\left(ABC\right)\Rightarrow BB'\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ABB'A'\right)\)

\(\Rightarrow BC=d\left(C;\left(A'AB\right)\right)\)

\(S_{A'AB}=\dfrac{1}{2}S_{ABB'A'}=\dfrac{3a^2}{2}\)

\(\Rightarrow V_{C.A'AB}=\dfrac{1}{3}BC.S_{A'AB}=\dfrac{1}{3}.2a.\dfrac{3a^2}{2}=a^3\)

b.

Theo cmt, \(BC\perp\left(ABB'A'\right)\Rightarrow BC\perp AN\)

Mà \(\left\{{}\begin{matrix}A'C\perp\left(P\right)\\AN\in\left(P\right)\end{matrix}\right.\) \(\Rightarrow AN\perp A'C\)

\(\Rightarrow AN\perp\left(A'BC\right)\Rightarrow AN\perp A'B\)

c.

Ta có: \(AA'||BB'\Rightarrow d\left(B;AA'\right)=d\left(N;AA'\right)\)

\(\Rightarrow S_{A'AN}=S_{A'AB}\)

Lại có: \(CC'||BB'\Rightarrow CC'||\left(ABB'A'\right)\)

\(\Rightarrow d\left(C';\left(ABB'A'\right)\right)=d\left(M;\left(ABB'A'\right)\right)\)

\(\Rightarrow V_{A'AMN}=V_{CA'AB}=a^3\)

NV
5 tháng 4 2022

undefined

NV
17 tháng 3 2019

A B C A' C' B' M N G G'

Sao G và G' chẳng liên quan gì đến bài toán vậy ta?

Do tam giác ABC vuông tại B và M là trung điểm AC\(\Rightarrow M\) là tâm đường tròn ngoại tiếp tam giác ABC

Tương tự, N là tâm đường tròn ngoại tiếp tam giác A'B'C'

\(MN//AA'\Rightarrow\left\{{}\begin{matrix}MN\perp\left(ABC\right)\\MN\perp\left(A'B'C'\right)\end{matrix}\right.\)

\(\Rightarrow\) với điểm P bất kì thuộc MN thì \(\left\{{}\begin{matrix}PA=PB=PC\\PA'=PB'=PC'\end{matrix}\right.\)

Gọi Q là trung điểm MN \(\Rightarrow QA=QA'\)

\(\Rightarrow QA=QB=QC=QA'=QB'=QC'\)

Vậy trung điểm của MN chính là điểm cách đều cách đỉnh của lăng trụ