Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔDCM có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔABM=ΔDCM(c-g-c)
Suy ra: AB=DC(hai cạnh tương ứng)
Ta có: ΔABM=ΔDCM(cmt)
nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔAHM vuông tại H và ΔDKM vuông tại K có
MA=MD(gt)
\(\widehat{AMH}=\widehat{DMK}\)(hai góc đối đỉnh)
Do đó: ΔAHM=ΔDKM(cạnh huyền-góc nhọn)
Suy ra: AH=DK(hai cạnh tương ứng)
c)
Ta có: MA=MD(gt)
mà A,M,D thẳng hàng(gt)
nên M là trung điểm của AD
Xét ΔAND có
H là trung điểm của AN(gt)
M là trung điểm của AD(cmt)
Do đó: HM là đường trung bình của ΔAND(Định nghĩa đường trung bình của tam giác)
\(\Leftrightarrow\)HM//ND và \(HM=\dfrac{ND}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: HM//ND(cmt)
mà \(B\in HM\)(gt)
và \(C\in HM\)(gt)
nên ND//BC(đpcm)
d) Xét ΔAHK vuông tại H có AK là cạnh huyền(AK là cạnh đối diện với góc vuông AHK)
nên AK là cạnh lớn nhất trong ΔAHK(Định lí)
hay AK>AH
mà AH=HN(H là trung điểm của AN)
nên AK>HN(đpcm)
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
c) c/m MN//BC
Xét t.g DCN = CDB (g-c-g)
=>BC=DN
Mà MN=2DN
=>BC=2DN
a ) Xét \(\Delta\)ANM và \(\Delta\)CND có :
AN = CN ( vì N là trung điểm AC )
MN = ND ( giả thiết )
Góc ANM = Góc CND ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)CND ( c - g - c )
b ) Ta có : Â + góc B + góc C = 180°
\(\Rightarrow\)Â + 70° + 50° = 180°
\(\Rightarrow\)Â = 180° - ( 70° + 50° )
\(\Rightarrow\)Â = 60°
Mà Â = Góc DCN ( \(\Delta\)ANM = \(\Delta\)CND )
\(\Rightarrow\)Góc DCN = 60°
c ) Ta có : Â = Góc DCN ( cmt )
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)AB // CD hay MB // CD
\(\Rightarrow\)◇MDCB là hình thang
Ta lại có : AM = CD ( \(\Delta\)ANM = \(\Delta\)CND )
Mà AM = MB ( vì M là trung điểm AB )
\(\Rightarrow\)MB = CD
Hình thang MDCB có hai cạnh đáy MB và CD bằng nhau nên MD = BC
Mà MD = 2MN
\(\Rightarrow\)BC = 2MN
a) Xét ΔAMN và ΔCDN
có AN = CN (gt)
N1 = N2 ( Tính chất 2 góc đối đỉnh)
NM = ND ( gt)
=> ΔAMN = ΔCDN ( c-g-c)