K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

a) Xét ΔABM và ΔDCM có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔDCM(c-g-c)

Suy ra: AB=DC(hai cạnh tương ứng)

Ta có: ΔABM=ΔDCM(cmt)

nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

b) Xét ΔAHM vuông tại H và ΔDKM vuông tại K có

MA=MD(gt)

\(\widehat{AMH}=\widehat{DMK}\)(hai góc đối đỉnh)

Do đó: ΔAHM=ΔDKM(cạnh huyền-góc nhọn)

Suy ra: AH=DK(hai cạnh tương ứng)

c)

Ta có: MA=MD(gt)

mà A,M,D thẳng hàng(gt)

nên M là trung điểm của AD

Xét ΔAND có 

H là trung điểm của AN(gt)

M là trung điểm của AD(cmt)

Do đó: HM là đường trung bình của ΔAND(Định nghĩa đường trung bình của tam giác)

\(\Leftrightarrow\)HM//ND và \(HM=\dfrac{ND}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: HM//ND(cmt)

mà \(B\in HM\)(gt)

và \(C\in HM\)(gt)

nên ND//BC(đpcm)

d) Xét ΔAHK vuông tại H có AK là cạnh huyền(AK là cạnh đối diện với góc vuông AHK)

nên AK là cạnh lớn nhất trong ΔAHK(Định lí)

hay AK>AH

mà AH=HN(H là trung điểm của AN)

nên AK>HN(đpcm)

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

c) c/m MN//BC

Xét t.g DCN = CDB (g-c-g)

=>BC=DN

Mà MN=2DN

=>BC=2DN

20 tháng 11 2019

a ) Xét \(\Delta\)ANM và \(\Delta\)CND có :

AN = CN ( vì N là trung điểm AC )

MN = ND ( giả thiết )

Góc ANM = Góc CND ( đối đỉnh )

\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)CND ( c - g - c )

b ) Ta có : Â + góc B + góc C = 180°

\(\Rightarrow\)Â + 70° + 50° = 180°

\(\Rightarrow\)                  = 180° - ( 70° + 50° )

\(\Rightarrow\)                  = 60°

Mà Â = Góc DCN ( \(\Delta\)ANM = \(\Delta\)CND )

\(\Rightarrow\)Góc DCN = 60°

c ) Ta có : Â = Góc DCN ( cmt )

Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow\)AB // CD hay MB // CD

\(\Rightarrow\)◇MDCB là hình thang

Ta lại có : AM = CD ( \(\Delta\)ANM = \(\Delta\)CND )

Mà AM = MB ( vì M là trung điểm AB )

\(\Rightarrow\)MB = CD 

Hình thang MDCB có hai cạnh đáy MB và CD bằng nhau nên MD = BC

Mà MD = 2MN

\(\Rightarrow\)BC = 2MN

a) Xét ΔAMN và ΔCDN
có AN = CN (gt)
N1 = N2 ( Tính chất 2 góc đối đỉnh)
NM = ND ( gt)
=> ΔAMN = ΔCDN ( c-g-c)

20 tháng 11 2019

bạn có thể gửi bài làm của câu a, b và hình đc ko ạ