K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABM và ΔDCM có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔDCM(c-g-c)

Suy ra: AB=DC(hai cạnh tương ứng)

Ta có: ΔABM=ΔDCM(cmt)

nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

b) Xét ΔAHM vuông tại H và ΔDKM vuông tại K có

MA=MD(gt)

\(\widehat{AMH}=\widehat{DMK}\)(hai góc đối đỉnh)

Do đó: ΔAHM=ΔDKM(cạnh huyền-góc nhọn)

Suy ra: AH=DK(hai cạnh tương ứng)

c)

Ta có: MA=MD(gt)

mà A,M,D thẳng hàng(gt)

nên M là trung điểm của AD

Xét ΔAND có 

H là trung điểm của AN(gt)

M là trung điểm của AD(cmt)

Do đó: HM là đường trung bình của ΔAND(Định nghĩa đường trung bình của tam giác)

\(\Leftrightarrow\)HM//ND và \(HM=\dfrac{ND}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: HM//ND(cmt)

mà \(B\in HM\)(gt)

và \(C\in HM\)(gt)

nên ND//BC(đpcm)

d) Xét ΔAHK vuông tại H có AK là cạnh huyền(AK là cạnh đối diện với góc vuông AHK)

nên AK là cạnh lớn nhất trong ΔAHK(Định lí)

hay AK>AH

mà AH=HN(H là trung điểm của AN)

nên AK>HN(đpcm)

22 tháng 1 2018

Đề bài này có một số lỗi, cô đã sửa. Em tham khảo trong bài dưới đây nhé.

Câu hỏi của Trần Việt Hà - Toán lớp 7 - Học toán với OnlineMath