K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM

=>D nằm trên đường trung trực của BM(1)

Ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1),(2) suy ra AD là đường trung trực của BM

=>AD\(\perp\)BM tại I và I là trung điểm của BM

c: Xét ΔKMP và ΔKAB có

KM=KA

\(\widehat{MKP}=\widehat{AKB}\)(hai góc đối đỉnh)

KP=KB

Do đó: ΔKMP=ΔKAB

=>\(\widehat{KMP}=\widehat{KAB}\)

=>MP//AB

9 tháng 1 2021

Hình bạn tự vẽ nhé.

a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)

nên \(\widehat{BAD}=\widehat{CAD}\)

Xét \(\Delta ABD\) và \(\Delta ACD\) có:

AD là cạnh chung

\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)

AB = AC

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)   (đpcm)

b. Gọi giao điểm của MN và AD là S

Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)

Xét \(\Delta AMS\) và \(\Delta ANS\) có:

AS là cạnh chung

\(\widehat{MAS}=\widehat{NAS}\)  (chứng minh trên)

AM = AN (gt)

\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)

Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AS\perp MN\)

hay \(AD\perp MN\)   (đpcm)

c. Ta có: AM = AN (gt)

\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\)  (định lí)

hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\)  (1)

Lại có: AB = AC (gt)

\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí)  (2)

Từ (1), (2)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

\(\Rightarrow\) MN // BC (dấu hiệu nhận biết)  (*)

Xét \(\Delta MOP\) và \(\Delta BDO\) có:

MO = BO (vì O là trung điểm của BM)

\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)

OD = PO (gt)

\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)

\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) MP // BC (dấu hiệu nhận biết)  (**)

Từ (*), (**)

\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC  (trái với tiên đề Ơ-clit)

\(\Rightarrow\) 3 điểm P, M, N thẳng hàng   (đpcm)

9 tháng 1 2021

hey .you vẽ hộ mk cái hình vs ạ

1: Xét ΔABD và ΔAMD có 

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

6 tháng 12 2021

giúp tui nha

1: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

26 tháng 12 2023

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM

=>D nằm trên đường trung trực của BM(1)

Ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1) và (2) suy ra AD là đường trung trực của BM

=>AD\(\perp\)BM tại I và I là trung điểm của BM

c: Xét ΔKBA và ΔKPM có

KB=KP

\(\widehat{BKA}=\widehat{PKM}\)(hai góc đối đỉnh)

KA=KM

Do đó: ΔKBA=ΔKPM

=>\(\widehat{KBA}=\widehat{KPM}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//MP

 

13 tháng 7 2018

cần cm IB=KM từ đó có AI=AK . suy ra tgAPK cân tại A. suy ra góc AKP=gocsIAD. từ đó có dpcm

1: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

18 tháng 7 2019

A B C E D M M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

18 tháng 7 2019

A B C M E F N

CM:a) Xét t/giác ABM và ACM

có: AB = AC (gt)

  \(\widehat{BAM}=\widehat{CAM}\) (gt) 

   AM : chung

=> t/giác ABM = t/giác ACM (c.g.c)

=> BM = CM (2 cạnh t/ứng)

=> M là trung điểm của BC

b) Ta có: AE + AC = EC 

         AF + AB = FB

mà AE = AF (gt); AB = AC (gt)

=> EC = FB

Xét t/giác BCE và t/giác CBF

có: BC : chung

  \(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)

 EC = FB (cmt)

=> t/giác BCE = t/giác CBF (c.g.c)

c) Xét t/giác BEM và t/giác CFM

có: EB = FC (vì t/giác BCE = t/giác CBF)

 \(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)

 BM = CM (cm câu a)

=> t/giác BEM = t/giác CFM (c.g.c)

=> ME = MF (2 cạnh t/ứng)

d) Xét t/giác AEN và t/giác AFN

có: AE = AF (gt)

  EN = FN (gt)

  AN : chung

=> t/giác AEN = t/giác AFN (c.c.c)

=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)

=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)

AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)

Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)

=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)

Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\) 

hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)

=> A, M, N thẳng hàng