Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) CM Tam giac ABM = tam giac CDM
Xét tam giac ABM và Tam giác CDM, ta có:
MA = MC (gt)
MB=MD (gt)
Góc AMB = góc DMC (đđ)
Suy ra Tam giác ABM = Tam giác CDM
b) CM AB song song CD
Ta có: Góc MBA =góc MCD ( cmt)
Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD
c) CM E là trung điểm AC
Ta có: Tứ giác ABCD có:
M là trung điểm AC gt)
M là trung điểm BD (gt)
Mà AC cắt BD tại M
Suy ra: Tứ giac ABCD là hình bình hành
Ta lại có: MN là trung điểm BC , MN //AB//CD.
Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.
a, +)Xét \(\Delta BCN\) và \(\Delta AEN\) có:
NC= NE (GT)
\(\widehat{BNC}=\widehat{ANE}\) ( đối đỉnh)
BN=NA (GT)
\(\Rightarrow\Delta BCN=\Delta AEN\) (c-g-c)
b, Theo câu a, ta có \(\Delta BCN=\Delta AEN\)
=> BC=AE (2 cạnh tương ứng) (1)
c, Xét \(\Delta ADM=\Delta CBM\)có
AM=BM (gt)
\(\widehat{AMD}=\widehat{CMB}\) (đối đỉnh)
DM=BM (gt)
\(\Rightarrow\Delta ADM=\Delta CBM\)
=> AD= BC ( 2 cạnh tương ứng) (2)
Từ (1) và (2) => AD= AE
c, Theo câu a, ta có \(\Delta BCN=\Delta AEN\)
=>\(\widehat{CBN}=\widehat{EAN}\)( 2 góc tương ứng)
Mà 2 góc này ở vị trí SLT => AE//BC (*1)
Theo câu b ta có \(\Delta ADM=\Delta CBM\)
=> \(\widehat{ADM}=\widehat{CBM}\) ( 2 goc t/ứ)
Mà 2 góc này ở vị trí SLT => AD//BC (*2)
Từ (*1) và (*2) => E, A, D thẳng hàng (theo tiên đề Ơ- clic)
Mở rộng thêm nha
Từ E, A ,D thẳng hàng =>A nằm giữa E và D ( vs kiến thưc lp 7 thì suy a luôn v)
Kết hợp vs cả cái AE= AD => A là trung điểm của DE
UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ
a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng) Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC) Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.a: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
=>AK//BC
mà AD//BC
nên D,A,K thẳng hàng
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔMAD=ΔMCB
=>\(\widehat{MAD}=\widehat{MCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
c: Xét ΔNAK và ΔNBC có
NA=NB
\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)
NK=NC
Do đó; ΔNAK=ΔNBC
=>\(\widehat{NAK}=\widehat{NBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AK//BC
Ta có: AD//BC
AK//BC
AK,AD có điểm chung là A
Do đó: D,A,K thẳng hàng
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
c: Xét ΔIAM và ΔKDM có
IA=KD
\(\widehat{IAM}=\widehat{KDM}\)
AM=DM
Do đó: ΔIAM=ΔKDM
=>\(\widehat{IMA}=\widehat{KMD}\)
mà \(\widehat{IMA}+\widehat{IMD}=180^0\)(hai góc kề bù)
nên \(\widehat{KMD}+\widehat{IMD}=180^0\)
=>K,M,I thẳng hàng