Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét t/g AMD và t/g BMC có
AM = BM (M là TĐ AB)
\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)
=> t/g AMD = t/g BMC (c.g.c)
b/ Xets t/g BMD và t/g AMC có
BM = AM
\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)
=> t/g BMD = t/g AMC (c.g.c)
=> \(\widehat{ABD}=\widehat{BAC}=90^o\)
=> BD ⊥ AB (1)
c/ Xét t/g BNE và t/g CNA có
BN = CN (N là TĐ BC)
\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)
=> T/g BNE = t/g CNA (c.g.c)
=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)
=> BE ⊥ AB (2) Từ (1) và (2)
=> D , B , E thẳng hàng
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔMAN vuông tại A có
AB=AN
AC=AM
Do đó: ΔCAB=ΔMAN
Suy ra: CB=MN
a: BC=căn 4^2+3^2=5cm
b: Xét ΔABC vuông tại A và ΔANM vuông tại A có
AB=AN
AC=AM
=>ΔABC=ΔANM
=>BC=NM
c: ΔANB vuông tại A có BA=AN
nên ΔANB vuông cân tại A
=>góc ANB=45 độ
ΔACM vuông tại A có AC=AM
nên ΔACM vuông cân tại A
=>góc ACM=45 độ=góc ANB
=>CM//NB
a: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của DB
Do đó: ADCB là hình bình hành
Suy ra: DA=BC
a: Xét tứ giác ABMC có
O là trung điêm chung của AM và BC
góc BAC=90 độ
=>ABMC là hình chữ nhật
=>AB=MC và MC//AB
b: ΔACB vuông tại A
mà AO là trung tuyến
nên OA=OB=OC
c: Xet ΔABC vuông tại A có AH là đường cao
nên 1/AH^2=1/AB^2+1/AC^2
a: Xet tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD=BC
b: Xét tứ giác ACBE có
M là trung điểm chung của AB và CE
=>ACBE là hình bình hành
=>AE//BC