Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔACB vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(1\right)\)
Xét ΔABK vuông tại A có AK là đường cao
nên \(AB^2=BK\cdot BD\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)
a/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)
\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)
\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
Bạn tự thay số tính nốt nhé vì số hơi lẻ
b/
Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)
Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC
Xét tg vuông ABI có
\(BI=\sqrt{AB^2+IA^2}\) (pitago)
Bạn tự thay số tính nhé
a:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(CA^2=BA^2+BC^2\)
\(\Leftrightarrow CA^2=10^2+12^2=244\)
hay \(CA=2\sqrt{61}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BI là đường cao ứng với cạnh huyền AC, ta được:
\(\left\{{}\begin{matrix}\dfrac{1}{BI^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\\BA^2=AI\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BI=\dfrac{60\sqrt{61}}{61}\left(cm\right)\\AI=\dfrac{50\sqrt{61}}{61}\left(cm\right)\end{matrix}\right.\)