Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
Dễ quá đi
Câu 2:
AB/AC=5/6
=>HB/HC=25/36
=>HB/25=HC/36=k
=>HB=25k; HC=36k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>900k^2=900
=>k=1
=>HB=25cm; HC=36cm
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)
nên \(AB=\dfrac{3}{7}AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{7}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{42^2}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{9}{49}AC^2}+\dfrac{\dfrac{9}{49}}{\dfrac{9}{49}AC^2}=\dfrac{1}{1764}\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}=2088\)
\(\Leftrightarrow AC^2=11368\)
\(\Leftrightarrow AC=14\sqrt{58}\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{3}{7}\cdot14\sqrt{58}=6\sqrt{58}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2=13456\)
hay BC=116(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(6\sqrt{58}\right)^2}{116}=18\left(cm\right)\\CH=\dfrac{AC^2}{CH}=\dfrac{\left(14\sqrt{58}\right)^2}{116}=98\left(cm\right)\end{matrix}\right.\)
VẼ HÌNH HƠI XẤU THÔNG CẢM NHA
áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)
áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)
thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)
a, Ta có : \(\dfrac{AB}{AC}=\dfrac{3}{4}=>\dfrac{3}{4}AC=AB\)
AB + AC = 21
3/4 AC + AC = 21
7/4 AC = 21
AC = 12 ( cm )
AB = 21 - 12 = 9 ( cm )
Áp dụng định lí Pytago vào tam giác , ta có :
BC ^ 2 = AB ^ 2 + AC ^ 2 = 12^2 + 9^2 = 225
-> BC = 15 ( cm )
b, Áp dụng hệ thức lượng :
AH . BC = AB . AC
-> AH = AB.AC / BC = \(\dfrac{9.12}{15}=7,2\left(cm\right)\)
AB^2 = BH . BC
-> BH = AB^2 / BC = \(\dfrac{81}{15}=5,4\left(cm\right)\)
AC^2 = HC . BC
-> HC = AC^2 / BC = \(\dfrac{144}{15}=9,6\left(cm\right)\)
AB/AC=5/6
=>BH/CH=25/36
=>BH/25=CH/36=k
=>BH=25k; CH=36k
AH^2=HB*HC
=>900k^2=12^2=144
=>k=2/5
=>BH=10cm; CH=14,4cm
Xét tam giác ABC vuông tại A, ta có: BC2 = AB2 + AC2 (định lí Pi - ta - go)
\(\frac{AB}{AC}=\frac{5}{6}\) => \(AB=\frac{5}{6}AC\) => BC2 = \(\left(\frac{5}{6}AC\right)^2+AC^2=\frac{25}{36}AC^2+AC^2=\frac{61}{36}AC^2\)
=> BC = \(\frac{\sqrt{61}}{6}AC\)
Ta có: SABC = \(\frac{AB.AC}{2}=\frac{AH.BC}{2}\)(Vì ABC là t/giác vuông)
<=> \(\frac{5}{6}AC.AC=AH.\frac{\sqrt{61}}{6}AC\)
=> \(\frac{5}{6}AC^2=30\cdot\frac{\sqrt{61}}{6}.AC\)
=> \(\frac{5}{6}AC^2-5\sqrt{61}AC=0\)
<=> \(AC\left(\frac{5}{6}AC-5\sqrt{61}\right)=0\)
<=> \(\frac{5}{6}AC=5\sqrt{61}\)
<=> AC = \(6\sqrt{61}\) (cm) => AB = 5/6AC = \(5\sqrt{61}\) (cm)
=> BC = \(\frac{\sqrt{61}}{6}.6\sqrt{61}=61\)(cm)
Xét t/giác AHB vuông tại H, ta có: \(AB^2=AH^2+BH^2\)(định lí Pi - ta - go)
=> BH2 = AB2 - AH2 = \(\left(5\sqrt{61}\right)^2-30^2=625\)
=> BH = 25 (cm) => AC = 61 - 25 = 36 (cm)
Lời giải:
Vì $\frac{BC}{AB}=\frac{5}{7}$ nên đặt $BC=5a; AB=7a(a>0)$
Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}$
$\Leftrightarrow \frac{1}{30^2}=\frac{1}{(7a)^2}+\frac{1}{(5a)^2}=\frac{74}{1225a^2}$
$\Rightarrow a=\frac{6\sqrt{74}}{7}$ (cm)
$\Rightarrow AB=7a=6\sqrt{74}$ (cm) và $BC=5a=\frac{30\sqrt{74}}{7}$ (cm)
Áp dụng định lý Pitago:
$AH=\sqrt{AB^2-BH^2}=42$ (cm)
$CH=\sqrt{BC^2-BH^2}=\frac{150}{7}$ (cm)