K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

THeo hệ thức (4) ta có \(\frac{1}{AD^2}=\frac{1}{AB^2}+\frac{1}{BC^2}=\frac{1}{12^2}+\frac{1}{16^2}=\frac{25}{2304}\Rightarrow AD=9,6\)

Theo py ta go ta có

\(AD^2=AB^2-BD^2=12^2-9,6^2=51,84\Rightarrow AD=\sqrt{51,84}=7,2\)

\(CD^2=AC^2-ÂD^2=16^2-9,6^2=163,84\Rightarrow CD=12,8\)

\(AC=7,2+12,8=20\)

13 tháng 6 2021

A B C H 12

a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)

\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)

* Áp dụng hệ thức : 

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)

\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)

\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm 

\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm

\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)

Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2

13 tháng 6 2021

A B C H D 15 20

b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Lại có : \(BC=BD+DC=15+20=35\)cm 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)

\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm 

\(\Rightarrow AB=\frac{3}{4}.28=21\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm 

\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm

Áp dụng định lí Pytago cho tam giác AHD vuông tại H 

\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm 

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm) 

$CH=BC-BH=5-1,8=3,2$ (cm)

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$

Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)

$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)

$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Hình vẽ:

24 tháng 7 2018

A B C D F E

a) Tam giác ABC vuông tại A (góc A = 90 độ)

Áp dụng định lý Pytago, ta có: \(AB^2+AC^2=9^2+12^2=BC^2\)

\(\Rightarrow BC=\sqrt{225}=15\) (Cm)

Áp dụng tính chất tia phân giác, ta có:

   \(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}=\frac{15}{9+12}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{5}{7}\times9=\frac{45}{7}\) (Cm)

     \(CD=\frac{5}{7}\times12=\frac{60}{7}\) (Cm)

24 tháng 7 2018

chắc chắn đúng ko bn

góc B=90-40=50 độ

Xét ΔABC vuông tại A có

tan C=AB/AC

=>12/AC=tan 40

=>\(AC\simeq14,3\left(cm\right)\)

=>\(BC=\sqrt{14.3^2+12^2}\simeq18,67\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/12=CD/18,67

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{12}=\dfrac{CD}{18.67}=\dfrac{AD+CD}{12+18.67}=\dfrac{14.3}{30.67}\simeq0,47\)

=>\(AD\simeq5,64\left(cm\right);CD\simeq8,76\left(cm\right)\)

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4

Xét ΔBAC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

\(\Leftrightarrow\widehat{C}=37^0\)

b: Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=4

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{1}{2}\)

Do đó: AD=1,5cm; CD=2,5cm

31 tháng 10 2023

a: Xét ΔABC có \(BC^2=AB^2+AC^2\left(20^2=400=144+256=12^2+16^2\right)\)

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot BC=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{12^2}{20}=7,2\left(cm\right)\\CH=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)

c: XétΔABC vuông tại A có

\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

=>\(\widehat{B}\simeq53^0\)

d: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

\(=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{96}{14}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)