Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Áp dụng định lí Py-ta-go vào tam giác vuông ABC có :
\(AB^2+BC^2=AC^2\)
\(5^2+12^2=AC^2\)
\(169=AC^2\)
\(\Rightarrow AC=\sqrt{169}=13\left(cm\right)\)
Vậy AC = 13 cm
b ) Ta có : \(\widehat{EBA}+\widehat{EBD}=180^o\)
\(90^o+\widehat{EBD}=180^o\)
\(\Rightarrow\widehat{EBD}=180^o-90^o=90^o\)
Xét \(\Delta EBA\) và \(\Delta EBD\) có :
BA = BD ( gt )
\(\widehat{EBA}=\widehat{EBD}\left(=90^o\right)\)
BE là cạnh chung
nên \(\Delta EBA=\Delta EBD\left(c.g.c\right)\)
=> EA = ED ( hai cạnh tương ứng )
=> \(\Delta EAD\) cân tại E
A) Áp dụng định lý Py-ta-go ta có :
AC^2 = AB ^2+ BC^2
=>√AC = 25+144
=> AC = 13
b)Xét tam giác AEB và Tam giác DEB cùng vuông tại B ta có :
AB = BD
BE chung
=> tam giác AEB = tam giác DEB(2 cạch góc vuông)
=> AE = ED (2 cạnh tương ứng)
=> Tam giác AED cân tại E
a: XétΔABC có \(AC^2=BA^2+BC^2\)
nên ΔBAC vuông tại B
b: Xét ΔEAD có
EB là đường cao
EB là đường trung tuyến
Do đó: ΔEAD cân tại E
c: Xét ΔCDA có
CB là đường cao
CE=2/3CB
Do đó: E là trọng tâm của ΔCDA
=>AE là đường trung tuyến ứng với cạnh CD
mà K là trung điểm của CD
nên A,E,K thẳng hàng
Xét 2 tam giác ABM và ADM có
AB = AD
BM = DM => tam giác ABM = tam giác ADM (c.c.c)
Cạnh AM chung
=> A1 = A2
B1 = D1
M1 = M2
Vì M1 kề bù với M2
=> M1 + M2 = 180
=>2 M1 = 180
=> M1 = 90
=< M2 = 90
Vì M1 kề bù vs M4
M2 kề bù vs M3
=> M1 + M4 = M2 + M3 = 180
Mà M1 = M2 = 90
=> M4 = 180 - 90 = 90
M3 = 180 - 90 = 90
=> M3 = M4
Xét 2 tam giác KMD và KMB có :
M3 = M4
BM = DM => tam giác KMD = tam giác KMB (c.g.c)
MK là cạnh chung
=> BK = DK
Xét 2 tam giác ABK và ADK có :
AB = AD
BK = DK => tam giác ABK = ADK (c.c.c)
AK là cạnh chung
b) Đợi tý , tớ suy nghĩ đã
theo tớ , đề câu a phải là :
AM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK
a: BD=10cm
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=goc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
a) AC = ?
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:
AC2 = AB2 + BC2
= 52 + 122 = 25 + 144 = 169
⇒ AC = 13 (cm)
b) ΔEAD cân
Xét hai tam giác vuông ABE và DBE có:
AB = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)
⇒ EA = ED (hai cạnh tương ứng)
⇒ ΔEAD cân tại E.
c) K là trung điểm của DC.
Ta có: BE = 4, BC = 12
⇒ BE = 1/3 BC
Hay E là trọng tâm của ΔACD.
⇒ AE là đường trung tuyến ứng với cạnh DC
⇒ K là trung điểm của DC.
d) AD < 4EK
Ta có: EA > AB, ED > BD
Mà AD = AB + BD, AE = ED (câu b)
⇒ 2AE > AD
Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA
Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)