K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

a, xét tam giác ABC và tam giác DBE có : góc B chung

AB = BD (Gt)

góc BAC = góc BDE = 90

=> tam giác ABC = tam giác DBE (cgv-gnk)

b, xét tam giác ABH và tam giác DBH có : BH chung

AB = BD (Gt)

góc HAB = góc HDB = 90 

=> tam giác ABH = tam giác DBH (ch-cgv)

=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD

=> BH là pg của góc ABC (đn)

c, AB = BD (gt) có BD = 6 (gt)

=> AB = 6 

BD + DC = BC 

BD = 6; CD = 4

=> BC =10

tam giác ABC vuông tại A (Gt)

=> BC^2 = AB^2 + AC^2

=> AC^2 = 10^2 - 6^2

=> AC^2 = 64

=> AC = 8 do AC > 0

5 tháng 4 2018

học rồi cố tình hỏi

7 tháng 4 2018

Minh đức: có sao ko?uống lộn thuoocfs ak

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
5 tháng 5 2022

a/ Xét tg ABD và tg ACD có

AB=AC (gt); BD=CD (gt)

tg ABC cân => \(\widehat{ABC}=\widehat{ACB}\) (Góc ở đáy tg cân)

=> tg ABD = tg ACD (c.g.c)

b/ Xét tg vuông EBD và tg vuông FCD có

BD=CD (gt)

\(\widehat{ABC}=\widehat{ACB}\) (cmt)

=> tg EBD = tg FCD (2 tam giác vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

c/ tg ABC cân có AD là trung tuyến => AD là đường cao (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)

\(\Rightarrow AD\perp BC\)

Xét tg vuông ABD và tg vuông EBD có

\(\widehat{BAD}=\widehat{BDE}\) (Cùng phụ với \(\widehat{ABC}\) )

tg EBD = tg FCD (cmt) \(\Rightarrow\widehat{BDE}=\widehat{CDF}\)  (2)

Mà \(\widehat{CDF}=\widehat{BDM}\) (góc đối đỉnh) (3)

Từ (2) và (3) \(\Rightarrow\widehat{BDE}=\widehat{BDM}\) => BD là phân giác của \(\widehat{EDM}\)

Ta có

tg EBD = tg FCD (cmt) => DE=DF

mà DM=DF (gt) 

=> DE=DM => tg EDM cân tại D

=> BD là đường cao của tg EDM (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Gọi N là giao của EM với BC

Xét tg vuông BND

\(\widehat{BDE}+\widehat{MED}=90^o\) (4)

Xét tg vuông AED có

\(\widehat{BAD}+\widehat{ADE}=90^o\) (5)

Từ (1) (4) (5) \(\Rightarrow\widehat{MED}=\widehat{ADE}\) => AD//EM (Hai đường thẳng bị cắt bởi 1 đường thẳng tạo thành hai góc ở vị trí so le trong bằng nhau thì hai đường thẳng đó // với nhau)