K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

a/ Xét tg ABD và tg ACD có

AB=AC (gt); BD=CD (gt)

tg ABC cân => \(\widehat{ABC}=\widehat{ACB}\) (Góc ở đáy tg cân)

=> tg ABD = tg ACD (c.g.c)

b/ Xét tg vuông EBD và tg vuông FCD có

BD=CD (gt)

\(\widehat{ABC}=\widehat{ACB}\) (cmt)

=> tg EBD = tg FCD (2 tam giác vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

c/ tg ABC cân có AD là trung tuyến => AD là đường cao (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)

\(\Rightarrow AD\perp BC\)

Xét tg vuông ABD và tg vuông EBD có

\(\widehat{BAD}=\widehat{BDE}\) (Cùng phụ với \(\widehat{ABC}\) )

tg EBD = tg FCD (cmt) \(\Rightarrow\widehat{BDE}=\widehat{CDF}\)  (2)

Mà \(\widehat{CDF}=\widehat{BDM}\) (góc đối đỉnh) (3)

Từ (2) và (3) \(\Rightarrow\widehat{BDE}=\widehat{BDM}\) => BD là phân giác của \(\widehat{EDM}\)

Ta có

tg EBD = tg FCD (cmt) => DE=DF

mà DM=DF (gt) 

=> DE=DM => tg EDM cân tại D

=> BD là đường cao của tg EDM (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Gọi N là giao của EM với BC

Xét tg vuông BND

\(\widehat{BDE}+\widehat{MED}=90^o\) (4)

Xét tg vuông AED có

\(\widehat{BAD}+\widehat{ADE}=90^o\) (5)

Từ (1) (4) (5) \(\Rightarrow\widehat{MED}=\widehat{ADE}\) => AD//EM (Hai đường thẳng bị cắt bởi 1 đường thẳng tạo thành hai góc ở vị trí so le trong bằng nhau thì hai đường thẳng đó // với nhau)

 

a: Xét ΔABD vuông tại D và ΔACD vuông tại C có

AB=AC

AD chung

Do đó: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)

Do đó: ΔAED=ΔAFD

=>AE=AF

=>ΔAEF cân tại A

 

16 tháng 9 2023

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

a: Xét ΔABD vuông tại D và ΔACD vuông tại D có

AB=AC

AD chung

=>ΔABD=ΔACD

=>BD=CD

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF 

=>ΔAEF cân tại A

c: CI+2AD

=3IK+2*3/2*AK

=3*(IK+AK)>3AI

5 tháng 5 2023

a) - Xét tam giác ABD và tam giác AED, có:
    + Chung AD
    + góc BAD = góc EAD (AD là tia phân giác của góc BAC)
    + AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)

5 tháng 5 2023

câu b) hình như điều cần chứng minh nhầm rồi hay sao ý

9 tháng 8 2017

đề bài kiểu j vậy

C ở đâu

8 tháng 2 2018

a, Vì tam giác ABC cân tại A 

AB = AC ( tính chất )

Xét tam giác ABH và tam giác ACD có 

        AB = AC

        AD chung

        BD=DC

suy ra 2 tam giác bàng nhau ( c.c.c) đúng ko ae

4 tháng 5 2016

a)Xét tam giác ABD và tam giác AED

AB=AE(Gt)

BAD=DAE(vì AD là tia p/giác)

AD là cạnh chung)

\(\Rightarrow\) tam giác ABD=tam giác AED(c.g.c)

b)Xét tam giác ADF và tam giác ADC

AF+AC(Gt)

BAD=DAE(vì AD là tia p/giác)

AD là cạnh chung

\(\Rightarrow\)tam giác ADF=tam giác ADC(c.g.c)

\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)

c)Xét tam giác AMF và tam giác AMC

AF+AC(Gt)

BAD=DAE(vì AD là tia p/giác)

AD là cạnh chung

\(\Rightarrow\)tam giác AMF=tam giác AMC(c.g.c)

\(\Rightarrow\)AMF=AMC(cặp góc tương ứng)
Mà AMF+AMC=1800(kề bù)

\(\Rightarrow\)AMF=AMC=1800:2=900

Do đó Am vuông góc với CF

 

 

 

5 tháng 5 2016

a)XÉT ▲ABD VÀ ▲AED CÓ:

AD CHUNG

AB=AE(GT)

GÓC BAD= GÓC EAD (AD LÀ PHÂN GIÁC)

=> ▲ABD= ▲AED(C-G-C)

 

 

19 tháng 12 2021

a: Xét ΔADB và ΔADC có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC