Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACD vuông tại C có
AB=AC
AD chung
Do đó: ΔABD=ΔACD
=>DB=DC
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)
Do đó: ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC
AD chung
=>ΔABD=ΔACD
=>BD=CD
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
c: CI+2AD
=3IK+2*3/2*AK
=3*(IK+AK)>3AI
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a, Vì tam giác ABC cân tại A
AB = AC ( tính chất )
Xét tam giác ABH và tam giác ACD có
AB = AC
AD chung
BD=DC
suy ra 2 tam giác bàng nhau ( c.c.c) đúng ko ae
a)Xét tam giác ABD và tam giác AED
AB=AE(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung)
\(\Rightarrow\) tam giác ABD=tam giác AED(c.g.c)
b)Xét tam giác ADF và tam giác ADC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác ADF=tam giác ADC(c.g.c)
\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)
c)Xét tam giác AMF và tam giác AMC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác AMF=tam giác AMC(c.g.c)
\(\Rightarrow\)AMF=AMC(cặp góc tương ứng)
Mà AMF+AMC=1800(kề bù)
\(\Rightarrow\)AMF=AMC=1800:2=900
Do đó Am vuông góc với CF
a)XÉT ▲ABD VÀ ▲AED CÓ:
AD CHUNG
AB=AE(GT)
GÓC BAD= GÓC EAD (AD LÀ PHÂN GIÁC)
=> ▲ABD= ▲AED(C-G-C)
a: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
a/ Xét tg ABD và tg ACD có
AB=AC (gt); BD=CD (gt)
tg ABC cân => \(\widehat{ABC}=\widehat{ACB}\) (Góc ở đáy tg cân)
=> tg ABD = tg ACD (c.g.c)
b/ Xét tg vuông EBD và tg vuông FCD có
BD=CD (gt)
\(\widehat{ABC}=\widehat{ACB}\) (cmt)
=> tg EBD = tg FCD (2 tam giác vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
c/ tg ABC cân có AD là trung tuyến => AD là đường cao (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
\(\Rightarrow AD\perp BC\)
Xét tg vuông ABD và tg vuông EBD có
\(\widehat{BAD}=\widehat{BDE}\) (Cùng phụ với \(\widehat{ABC}\) )
tg EBD = tg FCD (cmt) \(\Rightarrow\widehat{BDE}=\widehat{CDF}\) (2)
Mà \(\widehat{CDF}=\widehat{BDM}\) (góc đối đỉnh) (3)
Từ (2) và (3) \(\Rightarrow\widehat{BDE}=\widehat{BDM}\) => BD là phân giác của \(\widehat{EDM}\)
Ta có
tg EBD = tg FCD (cmt) => DE=DF
mà DM=DF (gt)
=> DE=DM => tg EDM cân tại D
=> BD là đường cao của tg EDM (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Gọi N là giao của EM với BC
Xét tg vuông BND
\(\widehat{BDE}+\widehat{MED}=90^o\) (4)
Xét tg vuông AED có
\(\widehat{BAD}+\widehat{ADE}=90^o\) (5)
Từ (1) (4) (5) \(\Rightarrow\widehat{MED}=\widehat{ADE}\) => AD//EM (Hai đường thẳng bị cắt bởi 1 đường thẳng tạo thành hai góc ở vị trí so le trong bằng nhau thì hai đường thẳng đó // với nhau)