K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

a) Xét △AMC và △BMN có:

+ MC = MN (gt).

+ MA = MB (M là trung điểm AB).

+ ^BMN = ^AMC (2 góc đối đỉnh).

=> △AMC = △BMN (c - g - c).

b) Xét tứ giác NBCA có:

+ M là trung điểm AB (gt).

+ M là trung điểm CN (MN = MC).

=> Tứ giác NBCA là hình bình hành (dhnb).

=> BN // AC (Tính chất hình bình hành).

Mà AB ⊥ AC (Tam giác ABC vuông  tại A).

=> BN ⊥ AB.

c) Tứ giác NBCA là hình bình hành (cmt).

=> ^CAN = ^NBC (Tính chất hình bình hành).

6 tháng 12 2021

a) Xét △AMC và △BMN có:

+ MC = MN (gt).

+ MA = MB (M là trung điểm AB).

+ ^BMN = ^AMC (2 góc đối đỉnh).

=> △AMC = △BMN (c - g - c).

b) Xét tứ giác NBCA có:

+ M là trung điểm AB (gt).

+ M là trung điểm CN (MN = MC).

=> Tứ giác NBCA là hình bình hành (dhnb).

=> BN // AC (Tính chất hình bình hành).

Mà AB ⊥ AC (Tam giác ABC vuông  tại A).

=> BN ⊥ AB.

19 tháng 11 2016

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)

6 tháng 1 2022

tham khảo 
 

mik ko thể vẽ hình đc

SORRY

Giải thích các bước giải:

a.*Xét ΔMBN,ΔMAC có:
MA=MB( vì M là trung điểm BA)
ˆNMB=ˆMC (2 góc đối đỉnh)
    MN=MC
⇔ΔMNB=ΔMCA(c.g.c)
⇒ˆMNB=ˆMCA
⇒BN//AC

     Vậy BN//AC
b.Từ câu a ⇒AC=BN
Ta có 
    BN//AC
⇒AC//BE
⇒ˆEAC=ˆAEB
*Xét ΔABE,ΔECA có: 
AE chung
ˆAEB=ˆEAC
    BE=AC
 ⇔ ΔABE=ΔECA(c.g.c)

⇒AB=EC

     Vậy AB=EC
c.Ta có 
       AC//BE
⇒ˆACB=ˆCBE
⇒ˆACF=ˆFBE
*Xét ΔACF và ΔBEF có:
FB=FC( F là trung điểm của BC)
 ˆACF=ˆEBF
    AC=BE
⇔ΔACF=ΔEBF(c.g.c)
⇒ˆAFC=ˆBFE
⇒A,F,E thẳng hàng

         Vậy A;F;E thẳng hàng

6 tháng 1 2022

nếu lỗi vào đây
https://hoidap247.com/cau-hoi/1396184

13 tháng 12 2023

a: Xét ΔAMN và ΔACB có

AM=AC

\(\widehat{MAN}=\widehat{CAB}\)(hai góc đối đỉnh)

AN=AB

Do đó: ΔAMN=ΔACB

b: Ta có: ΔAMN=ΔACB

=>\(\widehat{AMN}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NM//BC

c: Sửa đề: ME=CD

Xét ΔMDA vuông tại D và ΔCEA vuông tại E có

AM=AC

\(\widehat{MAD}=\widehat{CAE}\)(hai góc đối đỉnh)

Do đó: ΔMDA=ΔCEA

=>DA=EA

Xét ΔMAE và ΔCAD có

AM=AC

\(\widehat{MAE}=\widehat{CAD}\)(hai góc đối đỉnh)

AE=AD

DO đó:ΔMAE=ΔCAD

=>ME=CD

10 tháng 12 2020

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng

10 tháng 1 2018

A B C M N F E

a) Xét \(\Delta BNM\)và \(\Delta ACM\)có :

NM = MC ( gt )

\(\widehat{NMB}=\widehat{CMA}\)( hai góc đối đỉnh )

MB = MA ( gt )

Suy ra : \(\Delta BNM\)\(\Delta ACM\)( c.g.c )

\(\Rightarrow NB=AC\)( hai cạnh tương ứng )

\(\Rightarrow\widehat{BNM}=\widehat{ACM}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên NB // AC

b) Xét \(\Delta BNC\)có \(\widehat{EBC}\)là góc ngoài nên \(\widehat{EBC}\)\(\widehat{BNC}+\widehat{BCN}\)hay \(\widehat{EBC}\)\(\widehat{ACM}+\widehat{BCN}=\widehat{ACB}\)

Xét \(\Delta BEC\)và \(\Delta BAC\)có :

BE = AC ( vì NB = BE = AC )

\(\widehat{EBC}\)\(\widehat{ACB}\)( cmt )

BC ( cạnh chung )

Suy ra : \(\Delta BEC\)\(\Delta BAC\)( c.g.c )

\(\Rightarrow AB=EC\)( hai cạnh tương ứng )

c) Vì \(\widehat{EFC}=\widehat{AFB}\)( hai góc đối đỉnh )

Mà \(\widehat{AFB}=180^o-\widehat{AFC}\) 

\(\Rightarrow\widehat{EFC}+\widehat{AFC}=180^o-\widehat{AFC}+\widehat{AFC}=180^o\)

\(\Rightarrow\widehat{AFE}\)là góc bẹt nên A,F,E thẳng hàng