Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AB=NC và ΔCAN vuông tại C
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
a) Xét tam giác MAB và tam giác MCN có
MB =MC ( M là tđ BC)
AM =AN (gt)
AMB = CMD ( 2 góc đối đỉnh )
=> 2 tam giác = nhau (c-g-c)
=> AB =NC (2 cạnh tương ứng)
=> góc BAN = góc ANC (2 góc tương ứng)
mà 2 góc ở vị trí so le trong => AB // NC
=> A + C = 180 ( 2 góc trong cùng phía bù nhau)
=> 90 + c = 180 => góc C=90
xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C
b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc)
c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN
mà BM = AM (cmt ) => BM=AM=MN=1/2AN
=> tam giác ABN vuông tại B => AB vuông góc với BN
mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)
mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)
ta lại có MI cũng vuông góc với AC (gt)
=> M,K,I thẳng hàng (tiên đề ơ clits)
`Answer:`
a) Áp dụng định lý Pytago vào `\triangleAMN` vuông tại `A`, ta có:
`AN^2 =MN^2 -AM^2 <=>AN^2 =37^2 -12^2 <=>AN^2 =1369-144=1225<=>AN=35cm`
Ta có: `AM<AN<MN=>\hat{N}<\hat{M}<\hat{A}`
b) Xét `\triangleABI` và `\triangleNBI`, ta có:
`BI` chung
`AI=NI`
`\hat{AIB}=\hat{BIN}=90^o`
`=>\triangleABI=\triangleNBI`
c) Ta có:
`BI` vuông góc `AN`
`AM` vuông góc `AN`
\(\Rightarrow BI//AM\)
Mà `I` là trung điểm `AN`
`=>B` là trung điểm `MN`
`=>NB=1/2 MN`
Xét `\triangleACN`, ta có:
`NB` và `CI` là đường trung tuyến mà đều đi qua `D`
`=>D` là trọng tâm
`=>ND=2/3 NB`
Mà `NB=MB`
`=>ND=1/3 MN`
`=>MN=3ND`
Bạn tự vẽ hình nha
a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB
<=> góc ABM = góc ACN (vì các góc kề bù với nhau)
Xét tam giác ABM và tam giác ACN
Có: AB = AC (CMT)
góc ABM = góc ACN (CMT)
BM = CN (gt)
<=> tam giác ABM = tam giác ACN (c.g.c)
<=> AM = AN ( 2 góc tương ứng)
<=> tam giác AMN cân tại A
b. Vì tam giác ABM = tam giác ACN (CMT)
<=> góc MAB = góc CAN ( 2 góc tương ứng)
Xét tam giác vuông AHB và tam giác vuông AKC
Có: AB= AC (CMT)
góc AHB= góc AKC= 90 độ
góc MAB = góc CAN (CMT)
<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)
a: Xét ΔAMN và ΔACB có
AM=AC
\(\widehat{MAN}=\widehat{CAB}\)(hai góc đối đỉnh)
AN=AB
Do đó: ΔAMN=ΔACB
b: Ta có: ΔAMN=ΔACB
=>\(\widehat{AMN}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên NM//BC
c: Sửa đề: ME=CD
Xét ΔMDA vuông tại D và ΔCEA vuông tại E có
AM=AC
\(\widehat{MAD}=\widehat{CAE}\)(hai góc đối đỉnh)
Do đó: ΔMDA=ΔCEA
=>DA=EA
Xét ΔMAE và ΔCAD có
AM=AC
\(\widehat{MAE}=\widehat{CAD}\)(hai góc đối đỉnh)
AE=AD
DO đó:ΔMAE=ΔCAD
=>ME=CD