Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a) Xét \(\Delta\) DHM và \(\Delta\) DMC:
\(\widehat{MDH}chung.\)
\(\widehat{DHM}=\widehat{DMC}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(g-g\right).\)
b) Xét \(\Delta\) ABC cân tại A: AM là đường cao (gt).
\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) M là trung điểm của BC.
Ta có: \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(cmt\right).\)
\(\Rightarrow\dfrac{DH}{DM}=\dfrac{HM}{MC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow DH.MC=DM.HM.\)
Mà \(MC=BM\) (M là trung điểm của BC); \(DM=AD\) (D là trung điểm của AM).
\(\Rightarrow DH.BM=AD.HM.\)
c) Ta có: \(\widehat{HDM}+\widehat{DMH}=90^o\) (Tam giác DHM vuông tại H).
\(\widehat{HMC}+\widehat{DMH}=90^o\left(=\widehat{DMC}\right).\)
\(\Rightarrow\) \(\widehat{HDM}=\widehat{HMC}.\)
Mà \(\widehat{ADH}+\widehat{HDM}=180^o;\widehat{BMH}+\widehat{HMC}=180^o.\\ \Rightarrow\widehat{ADH}=\widehat{BMH}.\)
Xét \(\Delta\) ADH và \(\Delta\) BMH:
\(\widehat{ADH}=\widehat{BMH}\left(cmt\right).\\ \dfrac{AD}{BM}=\dfrac{DH}{MH}\left(DH.BM=AD.HM\right).\)
\(\Rightarrow\Delta\) ADH \(\sim\Delta\) BMH \(\left(g-g\right).\)
\(\Rightarrow\widehat{DAH}=\widehat{MBH}\) (2 góc tương ứng).
Xét \(\Delta\) AMN và \(\Delta\) BHN:
\(\widehat{N}chung.\)
\(\widehat{MAN}=\widehat{HBN}\left(\widehat{DAH}=\widehat{MBH}\right).\)
\(\Rightarrow\Delta\) AMN \(\sim\) \(\Delta\) BHN \(\left(g-g\right).\)
\(\Rightarrow\widehat{AMN}=\widehat{BHN}=90^o\) (2 góc tương ứng).
Xét \(\Delta\) ABN:
AM là đường cao \(\left(AM\perp BC\right).\)
BH là đường cao \(\left(\widehat{BHN}=90^o\right).\)
AM cắt BH tại E (gt).
\(\Rightarrow\) E là trực tâm.
\(\Rightarrow\) EN là đường cao.
\(\Rightarrow EN\perp AB.\)
BT 1:
a/ Xét tg ABE và tg ACF có
^BAE=^CAF (AD là phân giác ^BAC)
^AEB=^AFC=90
=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)
b/ Xét tg BDE và tg CDF có
^BDE=^CDF (góc đối đỉnh)
^BED=^CFD=90
=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)
Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)
BT 2:
a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)
cm tương tự cũng có AI//KH (cùng vg với AC)
=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)
^BAC=90
=> AIHK là hcn
b/
+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)
+ Xét 2 tg vuông IAK và tg vuông HKA có
IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)
=> ^AIK=^AHK (2)
Từ (1) và (2) => ^AIK=^ACB